PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simplification of geopotential perturbing force acting on a satellite

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the aspects of geopotential models is orbit integration of satellites. The geopotential acceleration has the largest influence on a satellite with respect to the other perturbing forces. The equation of motion of satellites is a secondorder vector differential equation. These equations are further simplified and developed in this study based on the geopotential force. This new expression is much simpler than the traditional one as it does not derivatives of the associated Legendre functions and the transformations are included in the equations. The maximum degree and order of the geopotential harmonic expansion must be selected prior to the orbit integration purposes. The values of the maximum degree and order of these coefficients depend directly on the satellite’s altitude. In this article, behaviour of orbital elements of recent geopotential satellites, such as CHAMP, GRACE and GOCE is considered with respect to the different degree and order of geopotential coefficients. In this case, the maximum degree 116, 109 and 175 were derived for the Earth gravitational field in short arc orbit integration of the CHAMP, GRACE and GOCE, respectively considering millimeter level in perturbations.
Rocznik
Strony
45--64
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
autor
  • Royal Institute of Technology, Division of Geodesy, Stockholm, Sweden
  • K.N.Toosi University of Technology, Dept. of Geodesy and Geomatics, Tehran, Iran
  • K.N.Toosi University of Technology, Dept. of Geodesy and Geomatics, Tehran, Iran
Bibliografia
  • Albertella A., Migliaccio F., and Sansò F. (2002) GOCE: The Earth Field by Space Gradiometry. Celestial Mechanics and Dynamical Astronomy, Vol. 83, 1-15.
  • Babolian E. and Malek Nejad K. (1994) Numerical computations, University of Elm va San’at publication, Tehran, Iran.
  • Balmino G., Perosanz F., Rummel R., Sneeuw N., Sünkel H. and Woodworth P., (1998) European Views on Dedicated Gravity Field Missions: GRACE and GOCE. An Earth Sciences Division Consultation Document, ESA, ESD-MAG-REP-CON-001.
  • Balmino G., Perosanz F., Rummel R., Sneeuw N. and Suenkel H. (2001) CHAMP, GRACE and GOCE: Mission Concepts and Simulations. Boll. Geof. Teor. Appl., Vol. 40, No. 3-4, 309-320.
  • ESA (1999) Gravity Field and Steady-State Ocean Circulation Mission, ESA SP-1233(1), Report for mission selection of the four candidate earth explorer missions. ESA Publications Division, pp. 217, July 1999.
  • Eshagh M. (2003a) Precise orbit determination of a low Earth orbiting satellite, MSc thesis, K. N. Toosi University of Technology, Tehran, Iran.
  • Eshagh M. (2003b) Consideration of the effect of Gravitational and non-gravitational forces acting on a low Earth orbiting satellite, paper to be presented in 11-th National Iranian Geophysical Conference, 1-3 December, National Geological Center, Tehran, Iran.
  • Eshagh M. (2005) Step variable numerical orbit integration of a low Earth orbiting satellite, Journal of the Earth & Space Physics, Vol. 31, No. 1, 1-12.
  • Eshagh, M., and Najafi Alamdari, M. (2005a) Investigation of orbital perturbations of a low Earth orbiting (LEO) satellite, paper to be presented in NATM June 27-29, Institute of Navigation ION 61 St. Cambridge, Massachusetts, United States of America.
  • Eshagh M. and Najafi-Alamdari M. (2005b) Numerical orbit integration of a low Earth orbiting satellite, paper to be presented in European navigation conference, GNSS 2005, German Institute of Navigation, Muenchen, Germany.
  • Eshagh M. and Najafi-Alamdari M. (2006) Comparison of different numerical integration methods of orbit integration, Journal of the Earth & Space Physics. Vol. 33, No. 1, 41-57. (in Persian).
  • Eshagh M. and Najafi-Alamdari M. (2007) Perturbations in orbital elements of a low Earth orbiting satellite, Journal of the Earth & Space Physics. Vol. 33, No. 1, 1-12.
  • Eshagh M. (2008a) Non-singular expression for the vector and gradient tensor of gravitation in a geocentric spherical frame, Computers & Geosciences, Vol. 34, 1762-1768.
  • Eshagh M. (2009a) Impact of vectorization in global synthesis and analysis in gradiometry, Acta Geodaetica et Geophysica Hungarica (Accepted).
  • Eshagh M. (2009b) Orbit integration in non-inertial frames, Journal of the Earth & Space Physics. (Accepted).
  • Heiskanen W.A. and Moritz H. (1967) Physical geodesy, W.H. Freeman and Company.
  • Hwang C. and Lin J.M. (1998) Fast integration of low orbiter’s trajectory perturbed by the earth’s non-sphericity, Journal of Geodesy, Vol. 72, 578-585.
  • Ilk K.H. (1983) Ein eitrag zur Dynamik ausgedehnter KörperGravitationswechselwirkung. Deutsche Geodätische Kommission. Reihe C, Heft Nr. 288, München, 181 pp.
  • Kaula W. (1966) Theory of satellite geodesy, Blaisdell, Waltheim.
  • Keller W. and Sharifi M. A. (2005) Satellite gradiometry using a satellite pair. Journal of Geodesy, Vol. 78, 544-557.
  • Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis E.C., Rapp R.H. and Olson T.R. (1998) The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96, NASA/TP-1998-206861. Goddard Space Flight Center, Greenbelt.
  • Parrot D. (1989) Short arc orbit improvement for GPS satellites, MSc thesis, Department of Surveying Engineering, University of New Brunswick, Canada.
  • Reigber C., Schwintzer P. and Lühr H. (1999) The CHAMP geopotential mission, Boll. Geof. Teor. Appl. Vol. 40, 285-289.
  • Reigber Ch., Jochmann H., Wünsch J., Petrovic S., Schwintzer P., Barthelmes F., Neumayer K.-H., König R., Förste Ch., Balmino G., Biancale R., Lemoine J.-M., Loyer S. and Perosanz F. (2004) Earth Gravity Field and Seasonal Variability from CHAMP. In: Reigber, Ch., Lühr, H., Schwintzer, P., Wickert, J. (eds.), Earth Observation with CHAMP - Results from Three Years in Orbit, Springer, Berlin, 25-30.
  • Rim H. J. and Schutz B. E. (2001) Precision orbit determination (POD), Geoscience laser and altimeter satellite system, University of Texas, United States of America.
  • Rummel R., Sanso F., Gelderen M., Koop R., Schrama E., Brovelli M., Migiliaccio F., and Sacerdote F. (1993) Spherical harmonic analysis of satellite gradiometry. Publ Geodesy, New Series, No. 39 Netherlands Geodetic Commission, Delft.
  • Santos M. C. (1994) On real time orbit improvement for GPS satellites, Ph.D thesis, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Canada.
  • Sharifi M.A. (2006) Satellite to satellite tracking in the space-wise approach, PhD dissertation, Geodätisches Institut der Universität Stuttgart.
  • Sneeuw N. (1992) Representation coefficients and their use in satellite geodesy, Manuscripta Geodaetica, Vol. 17, 117-123.
  • Su H. (2000) Orbit determination of IGSO, GEO and MEO satellites, Ph.D thesis, Department of Geodesy, University of Bundeswehr, Munchen, Germany.
  • Tapley B., Ries J. Bettadpur S., Chambers D., Cheng M., Condi F., Gunter B., Kang Z., Nagel P., Pastor R., Pekker T., Poole S. and Wang F. (2005) GGM02-An improved Earth gravity field model from GRACE. Journal of Geodesy, Vol. 79, 467-478.
  • Visser P. (1992) The use of satellites in gravity field determination and adjustment, PhD dissertation, University of Delft.
  • Wolf R. (2000) Satellite orbit and ephemeris determination using inter satellite links, Ph.D thesis, Department of Geodesy, University of Bundeswehr, Munchen, Germany.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b6c8ac8-b61c-4879-9bec-380ffbc1b7ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.