PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strength and size relationships of toe flexor muscles in three different functional force production tasks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Toe flexor strength (TFS) has been determined to evaluate the toe flexor muscle function. However, it is unclear how strength and size relationships of toe flexor muscles vary depending on the toes intended for force production. We aimed to clarify this by examining the relationship between TFS and toe flexor muscle size, and hypothesized TFS produced by all toes (TFS-All), the great toe (TFS-Great) and lesser toes (TFS-Lesser) would be specifically associated with the size of the muscles specialized in each corresponding toe flexion. Methods: The maximal anatomical cross-sectional area (ACSAmax) of each toe flexor muscle was measured by magnetic resonance imaging in twenty healthy young men. The three types of TFS were measured using a custom-made toe push dynamometer. Results: TFS-All was significantly associated with ACSAmax of the adductor hallucis transverse head (ADDH-TH) (r = 0.58, P = 0.01) and flexor hallucis brevis (FHB) (r = 0.56, P = 0.01). TFS-Great and TFS-Lesser were not significantly correlated with ACSAmax of any analyzed muscles, except for a significant correlation between TFS-Lesser and dorsal/plantar interosseous muscle (r = 0.48, P = 0.03). Conclusions: The size of two plantar intrinsic foot muscles, FHB, anatomically specialized for the great toe flexion, and ADDH-TH, supplementary flex the great toe, may be the determinant for TFS-All. However, TFS-Great and TFS-Lesser are not associated with the size of the muscles anatomically specialized in each corresponding toe flexion, perhaps due to difficulty in maximally and separately activating individual muscles (i.e., neural/anatomical reasons) during the TFS-Great and TFS-Lesser production.
Rocznik
Strony
25--33
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan.
  • Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Japan.
  • Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Japan.
  • Faculty of Science, Yamaguchi University, Yamaguchi, Yamaguchi, Japan.
autor
  • Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Japan.
  • Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan.
  • Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan.
  • Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Japan.
  • Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Japan.
  • National Institute of Fitness and Sports in Kanoya, Kanoya, Kagoshima, Japan.
autor
  • Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Japan.
  • Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan.
Bibliografia
  • [1] ABE T., TAYASHIKI K., NAKATANI M., WATANABE H., Relationships of ultrasound measures of intrinsic foot muscle crosssectional area and muscle volume with maximum toe flexor muscle strength and physical performance in young adults, J. Phys. Ther. Sci., 2016, 28 (1), 14–19, DOI: 10.1589/jpts.28.14.
  • [2] BALSHAW T.G., MADEN-WILKINSON T.M., MASSEY G.J., FOLLAND J.P., The Human Muscle Size and Strength Relationship: Effects of Architecture, Muscle Force, and Measurement Location, Med. Sci. Sports Exerc., 2021, 53 (10), 2140–2151, DOI: 10.1249/MSS.0000000000002691.
  • [3] BLAZEVICH A.J., GILL N.D., ZHOU S., Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo, J. Anat., 2006, 209 (3), 289–310, DOI: 10.1111/j.1469-7580.2006.00619.x
  • [4] DRAKE R.L., VOGL W., MITCHELL A.W.M., Gray’s anatomy for students, 4th ed., Elsevier, 2020.
  • [5] EDAMA M., KUBO M., ONISHI H., TAKABAYASHI T., YOKOYAMA E., INAI T., WATANABE H., NASHIMOTO S., KAGEYAMA I., Anatomical study of toe flexion by flexor hallucis longus, Ann. Anat., 2016, 204, 80–85, DOI: 10.1016/j.aanat.2015.11.008.
  • [6] ENDO M., ASHTON-MILLER J.A., ALEXANDER N.B., Effects of age and gender on toe flexor muscle strength, J. Gerontol. A Biol. Sci. Med. Sci., 2002, 57 (6), M392–397, DOI: 10.1093/gerona/57.6.m392.
  • [7] FARRIS D.J., KELLY L.A., CRESSWELL A.G., LICHTWARK G.A., The functional importance of human foot muscles for bipedal locomotion, Proc. Natl. Acad. Sci. U.S.A, 2019, 116 (5), 1645–1650, DOI: 10.1073/pnas.1812820116.
  • [8] FUKUNAGA T., MIYATANI M., TACHI M., KOUZAKI M., KAWAKAMI Y., KANEHISA H., Muscle volume is a major determinant of joint torque in humans, Acta Physiol. Scand., 2001, 172 (4), 249–255, DOI: 10.1046/j.1365-201X.2001.00867.x.
  • [9] GOLDMANN J.P., BRÜGGEMANN G.P., The potential of human toe flexor muscles to produce force, J. Anat., 2012, 221 (2), 187–194, DOI: 10.1111/j.1469-7580.2012.01524.x.
  • [10] GOODING T.M., FEGER M.A., HART J.M., HERTEL J., Intrinsic Foot Muscle Activation During Specific Exercises: A T2 Time Magnetic Resonance Imaging Study, J. Athl. Train., 2016, 51 (8), 644–650, DOI: 10.4085/1062-6050-51.10.07.
  • [11] HASHIMOTO T., UENO K., OGAWA A., ASAMIZUYA T., SUZUKI C., CHENG K., TANAKA M., TAOKA M., IWAMURA Y., SUWA G., IRIKI A., Hand before foot? Cortical somatotopy suggests manual dexterity is primitive and evolved independently of bipedalism, Philos. Trans. R Soc. Lond. B Biol. Sci., 2013, 368 (1630), 20120417, DOI: 10.1098/rstb.2012.0417.
  • [12] HAXTON H.A., Absolute muscle force in the ankle flexors of man, J. Physiol., 1944, 103 (3), 267–273, DOI: 10.1113/jphysiol.1944.sp004075.
  • [13] IKAI M., FUKUNAGA T., Calculation of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement, Int. Z. Angew. Physiol., 1968, 26 (1), 26–32, DOI: 10.1007/bf00696087.
  • [14] KANAYAMA T., NAKASE J., MOCHIZUKI T., ASAI K., YOSHIMIZU R., KIMURA M., KINUYA S., TSUCHIYA H., Evaluation of skeletal muscle activity during foot training exercises using positron emission tomography, Sci. Rep., 2022, 12 (1), 7076, DOI: 10.1038/s41598-022-11202-y.
  • [15] KOO T.K., LI M.Y., A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research, J. Chiropr. Med., 2016, 15 (2), 155–163, DOI: 10.1016/j.jcm.2016.02.012.
  • [16] KURIHARA T., TERADA M., NUMASAWA S., KUSAGAWA Y., MAEO S., KANEHISA H., ISAKA T., Effects of age and sex on association between toe muscular strength and vertical jump performance in adolescent populations, PloS One, 2021, 16 (12), e0262100, DOI: 10.1371/journal.pone.0262100.
  • [17] KURIHARA T., YAMAUCHI J., OTSUKA M., TOTTORI N., HASHIMOTO T., ISAKA T., Maximum toe flexor muscle strength and quantitative analysis of human plantar intrinsic and extrinsic muscles by a magnetic resonance imaging technique. J. Foot Ankle Res., 2014, 7, 26, DOI: 10.1186/1757-1146-7-26.
  • [18] KUSAGAWA Y., KURIHARA T., MAEO S., SUGIYAMA T., KANEHISA H., ISAKA T., Associations between the size of individual plantar intrinsic and extrinsic foot muscles and toe flexor strength, J. Foot Ankle Res., 2022, 15 (1), 22, DOI: 10.1186/s13047-022-00532-9.
  • [19] KUSAGAWA Y., KURIHARA T., MAEO S., SUGIYAMA T., KANEHISA H., ISAKA T., Associations of muscle volume of individual human plantar intrinsic foot muscles with morphological profiles of the foot, J. Anat., 2022, 241 (6), 1336–1343, DOI: 10.1111/joa.13753.
  • [20] LAKENS D., Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs, Frontiers in Psychology, 2013, 4, 863, DOI: https://doi.org/10.3389/fpsyg.2013.00863
  • [21] LATEY P.J., BURNS J., NIGHTINGALE E.J., CLARKE J.L., HILLER C.E., Reliability and correlates of cross-sectional area of abductor hallucis and the medial belly of the flexor hallucis brevis measured by ultrasound, J. Foot Ankle Res., 2018, 11 (1), 1–11, DOI: 10.1186/s13047-018-0259-0.
  • [22] MATSUNO S., YOSHIMURA A., YOSHIIKE T., MORITA S., FUJII Y., HONMA M., OZEKI Y., KURIYAMA K., Toe grip force of the dominant foot is associated with fall risk in communitydwelling older adults: a cross-sectional study, J. Foot Ankle Res., 2022, 15 (1), 42, DOI: 10.1186/s13047-022-00548-1.
  • [23] MICKLE K.J., ANGIN S., CROFTS G., NESTER C.J., Effects of age on strength and morphology of toe flexor muscles, J. Orthop. Sports Phys. Ther., 2016, 46 (12), 1065–1070, DOI: 10.2519/jospt.2016.6597.
  • [24] MICKLE K.J., MUNRO B.J., LORD S.R., MENZ H.B., STEELE J.R., ISB Clinical Biomechanics Award 2009: toe weakness and deformity increase the risk of falls in older people, Clin. Biomech., Bristol, Avon., 2009, 24 (10), 787–791, DOI: 10.1016/j.clinbiomech.2009.08.011.
  • [25] MISU S., DOI T., ASAI T., SAWA R., TSUTSUMIMOTO K., NAKAKUBO S., YAMADA M., ONO R., Association between toe flexor strength and spatiotemporal gait parameters in community-dwelling older people, J. Neuroeng. Rehabil., 2014, 11 (1), 1–7, DOI: 10.1186/1743-0003-11-143.
  • [26] MORITA N., YAMAUCHI J., KURIHARA T., FUKUOKA R., OTSUKA M., OKUDA T., ISHIZAWA N., NAKAJIMA T., NAKAMICHI R., MATSUNO S., KAMIIE S., SHIDE N., KAMBAYASHI I., SHINKAIYA H., Toe flexor strength and foot arch height in children, Med. Sci. Sports Exerc., 2015, 47 (2), 350–356, DOI: 10.1249/MSS.0000000000000402.
  • [27] NEUMANN D.A., Kinesiology of the musculoskeletal system: foundations for rehabilitation, Elsevier, Mosby, 2017.
  • [28] PEREZ OLIVERA A.L., SOLAN M.C., KARAMANIDIS K., MILEVA K.N., JAMES D.C., A voluntary activation deficit in m. abductor hallucis exists in asymptomatic feet, J. Biomech., 2022, 130, 110863, DOI: 10.1016/j.jbiomech.2021.110863.
  • [29] RIDGE S.T., MYRER J.W., OLSEN M.T., JURGENSMEIER K., JOHNSON A.W., Reliability of doming and toe flexion testing to quantify foot muscle strength, J. Foot Ankle Res., 2017, 10 (1), 1–7, DOI: 10.1186/s13047-017-0237-y.
  • [30] ROBB K.A., MELADY H.D., PERRY S.D., Fine-wire electromyography of the transverse head of adductor hallucis during locomotion, Gait Posture., 2021, 85, 7–13, DOI: 10.1016/j.gaitpost.2020.12.020.
  • [31] ROWLEY K.M., JARVIS D.N., KURIHARA T., CHANG Y.J., FIETZER A.L., KULIG K., Toe Flexor Strength, Flexibility and Function and Flexor Hallucis Longus Tendon Morphology in Dancers and Non-Dancers, Med. Probl. Perform Art., 2015, 30 (3), 152–156, DOI: 10.21091/mppa.2015.3029.
  • [32] ROWLEY M., KURIHARA T., ORTIZ-WEISSBERG D., KULIG K., Contributions of flexor hallucis longus and brevis muscles to isometric toe flexor force production, Acta Bioeng. Biomech., 2023, 25 (1), DOI: 10.37190/ABB-02222-2023-02.
  • [33] SAEKI J., IWANUMA S., TORII S., Force generation on the hallux is more affected by the ankle joint angle than the lesser toes: An in vivo human study, Biology, 2021, 10 (1), 1–8, DOI: 10.3390/biology10010048.
  • [34] SAEKI J., TOJIMA M., TORII S., Relationship between navicular drop and measuring position of maximal plantar flexion torque of the first and second-fifth metatarsophalangeal joints, J. Phys. Ther. Sci., 2015, 27 (6), 1795–1797, DOI: 10.1589/jpts.27.1795.
  • [35] SMITH R.E., LICHTWARK G.A., KELLY L.A., The energetic function of the human foot and its muscles during accelerations and decelerations, J. Exp. Biol., 2021, 224 (13), jeb242263, DOI:10.1242/jeb.242263.
  • [36] SOYSA A., HILLER C., REFSHAUGE K., BURNS J., Importance and challenges of measuring intrinsic foot muscle strength, J. Foot Ankle Res., 2012, 5 (1), 29, DOI: 10.1186/1757-1146-5-29.
  • [37] SPINK M.J., FOTOOHABADI M.R., MENZ H.B., Foot and ankle strength assessment using hand-held dynamometry: reliability and age-related differences, Gerontology, 2010, 56 (6), 525–532, DOI: 10.1159/000264655.
  • [38] TOURILLON R., MICHEL A., FOURCHET F., EDOUARD P., MORIN J.B., Human foot muscle strength and its association with sprint acceleration, cutting and jumping performance, and kinetics in high-level athletes, J. Sports Sci., 2024, 42(9), 814–824, DOI: 10.1080/02640414.2024.2367365.
  • [39] URITANI D., FUKUMOTO T., MATSUMOTO D., Intrarater and interrater reliabilities for a toe grip dynamometer, J. Phys. Ther. Sci., 2012, 24 (8), 639–643, DOI: 10.1589/jpts.24.639.
  • [40] URITANI D., FUKUMOTO T., MATSUMOTO D., SHIMA M., Reference values for toe grip strength among Japanese adults aged 20 to 79 years: A cross-sectional study, J. Foot Ankle Res., 2014, 7 (1), 1–6, DOI: 10.1186/1757-1146-7-28.
  • [41] URITANI D., FUKUMOTO T., MATSUMOTO D., SHIMA M., Associations between toe grip strength and hallux valgus, toe curl ability, and foot arch height in Japanese adults aged 20 to 79 years: A cross-sectional study, J. Foot Ankle Res., 2015, 8 (1), 4–9, DOI: 10.1186/s13047-015-0076-7.
  • [42] YAMAUCHI J., KOYAMA K., Importance of toe flexor strength in vertical jump performance, J. Biomech., 2020, 7, 104, 109719, DOI: 10.1016/j.jbiomech.2020.109719.
  • [43] YUASA Y., KURIHARA T., ISAKA T., Relationship between Toe Muscular Strength and the Ability to Change Direction in Athletes, J. Hum. Kinet., 2018, 64 (1), 47–55, DOI: 10.1515/hukin-2017-0183.
  • [44] ZATSIORSKY V.M., LI Z.M., LATASH M.L., Enslaving effects in multi-finger force production, Exp. Brain Res., 2000, 131 (2), 187–195, DOI: 10.1007/s00221990026.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b6c2638-3eb6-4894-857b-9dfd10baa601
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.