Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The wave-induced bedload transport and spatial distribution of its magnitude in the southern Baltic coastal zone of Poland are estimated. The vicinity of Lubiatowo was selected as a representative part of the Polish coast. It was assumed that transport is a function of shear stress; alternative approaches, based on force balances and discharge relationships, were not considered in the present study. Four models were studied and compared over a wide range of bottom shear stress and wind-wave conditions. The set of models comprises classic theories that assume a simplified influence of turbulence on sediment transport (e.g., advocated by authors such as Du Boys, Meyer-Peter and Müller, Ribberink, Engelund and Hansen). It is shown that these models allow to estimate transport comparable to measured values under similar environmental conditions. A united general model for bedload transport is proposed, and a set of maps of wave bedload transport for various wind conditions in the study area is presented.
Czasopismo
Rocznik
Tom
Strony
1--14
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
- University of Gdańsk, Institute of Oceanography, Piłsudskiego 46, 81-378 Gdynia, Poland
autor
- University of Gdańsk, Institute of Oceanography, Piłsudskiego 46, 81-378 Gdynia, Poland
Bibliografia
- Anderson, R.S. & Anderson S.P., 2010. Geomorphology: The Mechanics and Chemistry of Landscapes. Cambridge University Press, 651 pp.
- Bakhtyar, R., Barrya, D.A., Lib, L., Jengc, D.S. & Yeganeh-Bakhtiaryd, A., 2009. Modeling sediment transport in the swash zone: A review. Ocean Engineering 36, 767–783.
- Booij, N., Holthuijsen, L.H. & Ris, R.C., 1996. The SWAN wave model for shallow water. Proceedings of the 25th International Conference on Coastal Engineering, Orlando, USA, 668–676.
- Brownlie, W.R., 1981. Prediction of flow depth and sediment discharge in open channels. W.M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, Report No. KH-R-43A.
- Cieślak, A., 1985. Ruch rumowiska wzdłuż wybrzeża Polski [Sediment motion along the coast of Poland], Prace Instytutu Morskiego 690. Gdańsk.
- Cieślikiewicz, W., Dudkowska, A., Janowczyk, R., Roščinski, V., Roziewski, S. & Badur, J., 2014. Wind wave modelling over the Baltic Sea using WAM model and the coupled ocean circulation-wave POM model. Proceedings of the International Conference on Coastal Engineering , ASCE, Soeul, Korea, 422–428.
- Davies, A.G., van Rijn, L.C., Damgaard, J.S., van de Graaff, J. & Ribberink, J.S., 2002. Intercomparison of research and practical sand transport models. Coastal Engineering 46, 1–23.
- Dey, S., 2011. Entrainment threshold of loose boundary streams. [In:] P. Rowinski (Ed.), Experimental methods in hydraulic research. series: Geoplanet: Earth and Planetary Sciences, 29–48. Springer.
- Du Boys, P., 1879. Le Rhone et les rivieres a lit affouillable. Annales des Ponts et Chausse’es 18, 141–195.
- Einstein, H.A., 1950. The bed-load function for sediment transportation in open channel flows. Technical Bulletin 1026, 1–71.
- Engelund, F. & Hansen, E., 1967. A monograph on sediment transport in alluvial streams. Teknisk Forlag, Copenhagen, 65 pp.
- Gic-Grusza, G. & Dudkowska, A., 2014. Modeling of wind wave induced sediment transport in the coastal zone of Polish marine areas (Southern Baltic). Baltic International Symposium (BALTIC), 2014 IEEE/OES, Tallin, 1–5.
- Gic-Grusza, G., Kryla-Straszewska, L., Urbański, J. & Węsławski, J.M. (Eds), 2009. Atlas of Polish marine area bottom habitats. Environmental valorization of marine habitats. Broker-Innowacji, Gdynia, 180 pp.
- Günther, H. & Behrens, A., 2012: The WAM Model – Validation Document, Version 4.5.4. Institute of Coastal Research Helmholtz-Zentrum Geesthacht.
- Kramer, H., 1935. Sand mixtures and sand movement in fluvial models. Transactions of the American Society of Civil Engineers 100, 798–878.
- Leliavsky, S., 1966. An introduction to fluvial hydraulics. Dover Publications, New York, 257 pp.
- Madsen, O.S., 1994. Spectral wave-current bottom boundary layer flows. Proceedings of 24th International Conference on Coastal Engineering, ASCE, Kobe, 384–398.
- Meyer-Peter, E. & Müller, R., 1948. Formulas for bed-load transport. Proceedings of 2nd Meeting, IAHR, Stockholm, 39–64.
- Miedema, S.A., 2013. Constructing the Shields Curve, Part C: Cohesion by Silt, Hjulstrom, Sundborg. WODCON XX, Brussels, 1–15.
- O’Brien, M.P. & Rindlaub, B.D., 1934. The transportation of bedload by streams. Transaction of the American Geophysical Union 100, 393–419.
- Ostrowski, R., Piotrowska, D., Schönhofer, J., Skaja, M., Stella, M. & Szmytkiewicz, P., 2013. Parametry procesów hydrodynamicznych i morfodynamicznych w rejonie Morskiego Laboratorium Brzegowego w Lubiatowie [Hydrodynamic and morphodynamic processes parameters in the vicinity of the Coastal Research Station at Lubiatowo]. Instytut Budownictwa Wodnego PAN, Gdańsk, 24 pp.
- Ostrowski, R. & Pruszak, Z., 2003. Coastal Research Station at Lubiatowo. Summerschool-Workshop Coastal Zone. CEM, IBW PAN. Gdańsk, 65–80.
- Paplińska-Swerpel, B., 2003. Coastal Research Station at Lubiatowo. Summerschool-Workshop Coastal Zone. CEM, IBW PAN. Gdansk, Poland, 9–30.
- PN-EN ISO 14688-1:2006/A1:2014-02E Geotechnical investigation and testing – Identification and classification of soil – Part 1: Identification and description – Amendment 1 (ISO 14688-1:2002/Amd 1:2013), Warsaw, Poland, 12 pp.
- Pruszak, Z., Szmytkiewicz, P., Ostrowski, R., Skaja, M. & Szmytkiewicz, M., 2008. Shallow-water wave energy dissipation in a multi-bar coastal zone. Oceanologia 50, 43–58.
- Pruszak, Z. & Zeidler, R.B., 1995. Sediment transport in various time scale. Proceedings of the 24th International Conference on Coastal Engineering, New York 1, 2513–2526.
- Ribberink, J.S., 1998. Bed-load transport for steady flows and unsteady oscillatory flows. Coastal Engineering 34, 59–82.
- Schoklitsch, A., 1914. Uber Schleppkraft und Geschiebebewegung. Engelmann, Leipzig, 74 pp.
- Shields, A., 1936. Application of similarity principles and turbulence research to bed-load movement. Mitteilungen der Preußischen Versuchsans-talt für Wasserbau, Berlin, 26 pp.
- Soulsby, R., 1998. Dynamics of marine sands. Thomas Telford Publ., London, 272 pp.
- Soulsby, R. & Whitehouse, R., 1997. Threshold of sediment motion in coastal environment. Proceedings of the Pacific Coasts and Ports Conference. University of Canterbury, Christchurch, 149–154.
- Straub, L.B., 1935. Discussion on sand mixtures and sand movement in fluvial models. Proceedings of the American Society of Civil Engineers 61, 101–107.
- Swart, D.H., 1974. Offshore sediment transport and equilibrium beach profiles. Delft Hydraulics Laboratory Publication, 131 pp.
- Tarnowska, K., 2011. Strong winds on Poland’s Baltic Sea Coast. Prace i Studia Geograficzne 47, 197–204.
- Urbański, J., Grusza, G., Chlebus, N. & Kryla, L., 2008. A GIS-based WFD oriented typology of shallow micro-tidal soft bottom using wave exposure and turbidity mapping. Estuarine, Coastal and Shelf Science 78, 1, 27–37.
- USWES, 1936. Flume tests made to develop a synthetic sand which will not form ripples when used in movable bed models. Technical Memorandum 99-1, US Waterways Experiment Station, Viecksburg.
- Uścinowicz, S., Zachowicz, J., Graniczny, M. & Dobracki, R., 2004. Geological structure of the southern Baltic coast and related hazards. Polish Geological Institute Special Papers 15, 61–68.
- van Rijn, L.C., 1993. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. Aqua Publications, Amsterdam, 673 pp.
- Viška, M. & Soomere, T., 2013. Simulated and observed reversals of wave driven alongshore sediment transport at the eastern Baltic Sea coast. Baltica 26, 145–56.
- WAMDI Group, 1988. The WAM model – A third generation ocean wave prediction model. Journal of Physical Oceanography 18, 1775–1810.
- Wong, M., 2003. Does the bedload transport relation of Meyer-Peter and Müller fits its own data? Proceedings of the 30th IAHR Congress. Thessaloniki, 8 pp.
- Wong, M. & Parker, G., 2006. Reanalysis and correction of bed-load relation of Meyer-Peter and Müller using their own database. Journal of Hydraulic Engineering 132, 1159–1168.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b6ad1a8-cbee-4737-8eac-67d8153cfa09