PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A Design of Experiments for Statistically Predicting Risk of Adverse Health Effects on Drivers Exposed to Vertical Vibrations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An injury risk factor (IRF), which indicates the risk of adverse health effect to lumbar rachis arising from mechanical vibrations, is developed. Experiments have been conducted that consider acceleration levels at the seat of drivers, posture, morphology, density, damping rate and body mass as independent variables. A parametric finite-element model of the lumbar rachis has been generated. It is shown that the IRF increases with ageing and an IRF of 30% is proposed as a threshold for fatigue purposes. This level is reached if a peak acceleration level greater than 3 m/s2 is applied to a light (55 kg) and an old driver with a low bone density and a damping rate of 20%. This vibration threshold must be reduced to 2.7 m/s2 if the driverʼs weight increases to 75 kg and to 2 m/s2 if the driver is heavy (98 kg).
Rocznik
Strony
221--232
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Ecole de technologie superieure, Montreal, QC, Canada
autor
  • Department of Mechanical Engineering, Ecole de technologie superieure, Montreal, QC, Canada
autor
  • Department of Mechanical Engineering, Ecole de technologie superieure, Montreal, QC, Canada
Bibliografia
  • 1.Bovenzi M, Hulshof C. An updated review of epidemiologic studies on the relationship between exposure to whole-body vibration and low back pain (1986–1997). Int Arch Occup Environ Health. 1999;72(6):351–65.
  • 2.Lings S, Leboeuf-Yde C. Whole-body vibration and low back pain: a systematic, critical review of the epidemiological literature 1992–1999. Int Arch Occup Environ Health. 2000;73(5):290–7.
  • 3.Pope MH, Wilder DG, Magnusson M. Possible mechanics of low back pain due to whole-body vibration. J Sound Vib. 1998;215(4):687–97 DOI:http://dx.doi.org/10.1006/jsvi.1998.1698).
  • 4.Thomas M. A theoretical model for predicting fatigue limits of lumbar spine incurred to random vibration exposure during driving, In: Shayan E, editor. The 26th International Conference on Computers & Industrial Engineering. Hawthorn, VIC, Australia: Swinburne University of Technology; 1999. p. 419–23.
  • 5.Sandover J. The fatigue approach to vibration and health: is it a practical and viable way of predicting the effects on people? J Sound Vib. 1998;215(4):699–721 (DOI:http://dx.doi.org/10.1006/jsvi.1998.1605).
  • 6.Seidel H, Blüthner R, Hinz B, Schust B. On the health risk of the lumbar spine due to whole-body vibration—theoretical approach, experimental data and evaluation of whole-body vibration. J Sound Vib. 1998;215(4):723–41 (DOI:http://dx.doi.org/10.1006/jsvi.1998.1601).
  • 7.Brinckmann P, Johannleweling N, Hilweg D, Biggemann M. Fatigue fracture of human lumbar vertebrae. Clin Biomech (Bristol, Avon). 1987;2(2);94–6.
  • 8.Pope MH, Hansson TH. Vibration of the spine and low Back pain. Clin Orthop Relat Res. 1992;279:49–59.
  • 9.Hansson TM, Keller T, Johnson R. Mechanical behaviour of the human lumbar spine. II. Fatigue strength during dynamic compressive loading, J Orthop Res. 1987:5(4):479–87.
  • 10.Ayari H, Thomas M, Dore S. Developpement d’un modele statistique de prediction de la duree de vie du rachis lombaire, dependant de la contrainte appliquee, de l’age et de la densite osseuse [Statistical model development for predicting life time of lumbar rachis, according to cyclic stresses, age and bone density]. Perspectives Interdisciplinaires Sur le Travail Et la Sante (PISTES). 2005:7(2):1–14. Retrieved July 26, 2011, from: http://www.pistes.uqam.ca/v7n2/articles/v7n2a8.htm.
  • 11.Verver MM, van Hoof J, Oomens CW, Van De van de Wouw N, Wismans JS. Estimation of spinal loading in vertical vibrations by numerical simulation. Clin Biomech (Bristol, Avon). 2003;18:800–11.
  • 12.Fritz M. Description of the relation between the forces acting in the lumbar spine and whole-body vibrations by means of transfer functions. Clin Biomech (Bristol, Avon). 2000;15:234–40.
  • 13.Thomas M, Lakis AA, Sassi S. Adverse health effects of long-term whole-body random vibration exposure. In: Recent research. Development in sound and vibration 2. Trivandrum, Kerala, India: Transworld Research Network; 2004. p. 55–73.
  • 14.Lavaste F, Skalli W, Robin S, Roy-Camille R, Mazel C. Three-dimensional geometrical and mechanical modeling of the lumbar spine. J Biomech. 1992;25(10):1153–64.
  • 15.Griffin MJ. Handbook of human vibrations. London, UK: Academic Press; 1990.
  • 16.Ayari H, Thomas M, Doré S. Development of an injury risk factor for drivers, Revue Internationale sur l’Ingenierie des Risques Industriels. 2008;1(2):120–38. Retrieved July 26, from: http://jiiri.etsmtl.ca/Article3_Ayari_J-IRI.pdf.
  • 17.Keller TS. Predicting the compressive mechanical behavior of bone. J Biomech. 1994;27(9):1159–68.
  • 18.Berry JL, Moran JM, Berg WS, Steffee AD. A morphometric study of human lumbar and selected thoracic vertebrae. Spine (Phila Pa 1976). 1987;12(4):362–7.
  • 19.Ayari H, Thomas M, Dore S, Serrus O. Evaluation of lumbar vertebra injury risk to the seated human body when exposed to vertical vibration. J Sound Vib. 2009;321(1–2):454–70 (DOI:10.1016/j.jsv.2008.09.046).
  • 20.Izambert O, Mitton D, Thourot M, Lavaste F. Dynamic stiffness and damping of human intervertebral disc using axial oscillatory displacement under a free mass system. Eur Spine J. 2003;12(6):562–6.
  • 21.Kasra M, Shirazi-Adl A, Drouin G. Dynamics of human lumbar intervertebral joints. Experimental and finite-element investigations. (Phila Pa 1976). 1992;17(1):93–102.
  • 22.International Organization for Standardization (ISO). Mechanical vibration and shock— evaluation of human exposure to whole-body vibration—part 5: Method for evaluation of vibration containing multiple shocks (Standard No. ISO 2631-5:2004). Geneva, Switzerland: ISO; 2004.
  • 23.International Organization for Standardization (ISO). Mechanical vibration and shock—evaluation of human exposure to whole-body vibration—part 1: general requirements (Standard No. ISO 2631-1:1997). Geneva, Switzerland: ISO; 1997.
  • 24.McCalden RW, McGeough JA, Court-Brown CM. Age-related changes in the compressive strength of cancellous bone: the relative importance of changes in density and trabecular architecture. J Bone Joint Surg Am. 1997;79(3):421–7.
  • 25.Ferguson SJ, Steffen T. Biomechanics of the aging spine. Eur Spine J. 2003;12(Suppl.2):S97–103.
  • 26.Ettinger MP. Aging bone and osteoporosis: strategies for preventing fractures in the elderly. Arch Intern Med. 2003:163(18):2237–46.
  • 27.Adams M, Bogduk N, Burton K, Dolan P. Biomechanics of back pain. 2nd ed. Edinburgh, UK: Churchill Livingstone; 2006.
  • 28.Hinz B, Bluthner R, Menzel G, Seidel H. Estimation of disc compression during transient whole-body vibration. Clin Biomech (Bristol, Avon). 1994;9(4):263–71 (DOI:http://dx.doi.org/10.1016/0268-0033(94)90009-4).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b625297-eb20-44b6-94de-202711f0fc33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.