PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of 3-D fracture criteria for assessment of fatigue strength of composite plate with internal delamination

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fracture analysis of the composite plates with circular delaminations working in a regime of cyclic multi-axial stresses is the main object of the paper. Such structures with internal damage are mainly exposed for local or global buckling and delamination propagation under service loadings. Analyses of described phenomena are complex and require application of fracture mechanics and nonlinear analysis. The literature review of experimental and theoretical investigations of composite plates with circular delaminations is presented in the paper. The essential papers including experimental fatigue tests and theoretical techniques for studying of damage propagation growth are cited and crucial conclusions are given. In composite structures with internal delamination, the cyclic compression-tension and compression-compression stresses are the most dangerous. Moreover, the rapid increase of damage propagation occurs in the final stage of structure degradation. Such problem is investigated and illustrated on the example of rectangular plate with the circular delamination. The calculations are made for bi-axial compression and AS4/3501-6 graphite/epoxy material. The fracture analysis is made using different criteria based on the linear elastic fracture mechanics. The criteria are compared with the multiaxial experimental tests made for AS4/3501-6 graphite/epoxy material. It is observed that in composite plate with the internal delamination subjected for compressive loading the complex form of the gap opening occur. Because of this, the 3-D fracture criteria are applied in the investigations. Presented methodology allow for suitable selection of the multiaxial fracture model for analysis of such structures including interactions between different forms of the gap opening. The critical loadings for different layers orientation are estimated and given in the paper.
Słowa kluczowe
Twórcy
  • Cracow University of Technology Faculty of Mechanical Engineering tel.: + 48 12 374 33 85, fax: + 48 12 374 33 60
Bibliografia
  • [1] Asp, L. E., Nilsson, S., Singh, S., An experimental investigation of the influence of delamination growth on the residual strength of impacted laminates, Composites: Part A 32, pp. 1229-1235, 2001.
  • [2] Barski, M., Kędziora, P., Muc, A., Romanowicz, P., Structural health monitoring (SHM) methods in machine design and operation, Archive of Mechanical Engineering, LXI, pp. 653-677, 2014.
  • [3] Beheshty, M. H., Harris, B., Post-impact fatigue behaviour of CFRP and the growth of low-velocity impact damage during fatigue, International Conference on Fatigue of Composites (ICFC 1), pp. 355-362, 1997.
  • [4] Butler, R., Almond, D. P., Hunt, G. W., Hu, B., Gathercole, N., Compressive fatigue limit of impact damaged composite laminates, Composites: Part A 38, pp. 1211-1215, 2007.
  • [5] Daniel, I. M., Gdoutos, E. E., Rajapakse, Y. D. S., Major accomplishments in composite materials and sandwich structures, 2009.
  • [6] Hashemi, S., Kinlich, A. J., Williams, J. G., Mixed-mode fracture in fibre-polymer composite laminates. Composite Materials: Fatigue and Fracture, ASTM STP 1110. (ed) O'Brien, T.K. American Society for Testing and Materials, pp. 143-168, Philadelphia, USA 1991.
  • [7] Ireman, T., Thesken, J. C., Greenhalgh, E., Sharp, R., Gädke, M., Maison, S., Roudolff, F., La Barbera, A., Damage propagation in composite structural elements-coupon experiments and analyses, Composite Structures 36, pp. 209-220, 1996.
  • [8] Jones, R., Stelzer, S., Brunner, A. J., Mode I, II and mixed mode I/II delamination growth in composites, Composite Structures, 110, pp. 317-324, 2014.
  • [9] Kruger, R., Virtual crack closure technique: history, approach and applications, Applied Mechanics Review, 57, pp. 109-143, 2004.
  • [10] Melin, L. G., Schön, J., Buckling behavior and delamination growth in impacted composite specimens under fatigue load: an experimental study, Composites Science and Technology, 61, pp. 1841-1852, 2001.
  • [11] Melin, L. G., Schön, J., Nyman, T., Fatigue testing and buckling characteristics of impacted composite specimens, International Journal of Fatigue, 24, pp. 263-272, 2002.
  • [12] Muc, A., Bondyra, A., Romanowicz, P., Buckling of composite multi-layered shells – an experimental analysis, Shell Structures: Theory and Applications, 3, pp. 227-230, 2014.
  • [13] Muc, A., Stawiarski, A., Identification of damages in composite multi-layered cylindrical panels with delaminations, Composite Structures 94, pp. 1871-1879, 2012.
  • [14] Nilsson, K. F., Asp, L. E., Alpman, J. E., Nystedt, L., Delamination buckling and growth for delaminations at different depths in a slender composite panel, International Journal of Solids and Structures, 38, pp. 3039-3071, 2001.
  • [15] Pradhan, B., Panda, S. K., The influence of ply sequence and thermoelastic stress field on asymmetric delamination crack growth behavior of embedded elliptical delaminations in laminated FRP composites, Composites Science and Technology, 66, pp. 417-426, 2006.
  • [16] Ramesh Babu, P., Pradhan, B., Effect of damage levels and curing stresses on delamination growth behavior emanating from circular holes in laminated FRP composites, Composites: Part A, 38, pp. 2412-2421, 2007.
  • [17] Ramkumar, R. L., Effect of low-velocity impact damage on the fatigue behavior of graphite/epoxy laminates, ASTM STP, 813, pp. 116–135, 1983.
  • [18] Reeder, J. R., A bilinear fracture criterion for mixed mode delamination, Composite Materials: Testing and Design, 1206, pp. 303-322, 1993.
  • [19] Riccio, A., Scaramuzzino, F., Perugini, P., Embedded delamination growth in composite panels under compressive load, Composites: Part B 32, pp. 209-218, 2001.
  • [20] Rinderknecht, S., Kröplin, B., A computational method for the analysis of delamination growth in composite plates, Computers & Structures, 64, pp. 359-374, 1997.
  • [21] Rosenfeld, M. S., Gause, L. W., Compression fatigue behaviour of graphite/epoxy in the presence of stress raisers, Fatigue of fibrous composite materials, ASTM STP 723, American Society for Testing and Materials, pp. 174-196, 1981.
  • [22] Shen, F., Lee, K. H., Tay, T. E., Modeling delamination growth in laminated composites, Composite Science and Technology 61, pp. 1239-1251, 2001.
  • [23] Symons, D. D., Davis, G., Fatigue testing of impact-damaged T300/914 carbon-fibre-reinforced plastic, Computer Science and Technology, 60, pp. 379-389, 2000.
  • [24] Williams, J. G., The fracture-mechanics of delamination tests, Journal of Strain Analysis for Engineering design, 24(4), pp. 207-214, 1989.
  • [25] Wu, E. M., Reuter Jr, R. C., Crack extension in fiberglass reinforced plastics, T. & AM Report No. 275, 1965.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b5ad20d-03c3-4cf4-a998-746e6f46e2b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.