PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of computational grid resolution on the quality of forecasts of dangerous convection phenomena: a case study of August 11, 2017

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
On August 11, 2017, a violent convection phenomenon took place in northwestern Poland, i.e., a storm combined with intense rainfall and hurricane winds. This paper presents an attempt to analyze this case by using the results of a numerical weather model, at grid spacings of 7 km, 2.8 km, and 0.7 km. Various convective indicators were analyzed to assess the nature of the event. The key question the authors try to answer is: „To what extent, if any, did a tenfold increase in resolution improve the quality of the numerical forecasts?” This question, however, has not been conclusively resolved. The most likely cause of this event was a supercell rapidly moving from south to northeast. This supercell's path has been mapped (qualitatively at least) by the Supercell Detection Index at all resolutions used. As the resolution increased, the forecasted maximum gusts also increased from 25 m/s in the domain with a resolution of 7 km to 35 m/s at a resolution of 2.8 km and up to about 50 m/s at the highest resolution of 0.7 km. A key conclusion is that the results of the model at a resolution of 2.8 km are much closer to reality than at 7 km. This effect did not pertain to differences between the 2.8 km and 0.7 km models. The latter increase in resolution did not significantly improve the quality of the forecast.
Twórcy
  • Institute of Meteorology and Water Management - National Research Institute
  • Institute of Meteorology and Water Management - National Research Institute
Bibliografia
  • Baldauf M., Seifert A., 2008, COSMO-DE Ausgabe: erweitert durch SDI (Supercell Detection Index) und Ceiling, available online at https://www.dwd.de/DE/fachnutzer/forschung_lehre/numerische_wettervorhersage/nwv_aenderungen/_functions/DownloadBox_modellaenderungen/cosmo_de/pdf_2006_2008/pdf_lmk_16_01_2008.html (data access 16.01.2023).
  • Bonekamp P.N.J., Collier E.C., Immerzeel W.W., 2018, The impact of spatial resolution, land use, and spinup time on resolving spatial precipitation patterns in the Himalayas, Journal of Hydrometeorology, 19(10), 1565-1581, DOI: 10.1175/JHM-D-17-0212.s1.
  • Celiński-Mysław D., Matuszko M., Taszarek M., 2020, Climatology and atmospheric conditions associated with cool season bow echo storms in Poland, Atmospheric Research, 240, 104944, DOI: 10.1016/j.atmosres.2020.104944.
  • Chmielewski T., Szer J., Bobra P., 2020, Derecho wind storm in Poland on 11112 August 2017: results of the post-disaster investigation, Environmental Hazards, 19 (5), 508-528, DOI: 10.1080/17477891.2020.1730154.
  • Dahl J.M., Parker M.D., Wicker L.J., 2014, Imported and storm-generated near-ground vertical vorticity in a simulated supercell, Journal of Atmospheric Sciences, 71 (8), 3027-3051, DOI: 10.1175/JAS-D-13-0123.1.
  • Duniec G., Interewicz W., Mazur A., Wyszogrodzki A., 2017, Operational setup of the COSMO-based, time-lagged Ensemble Prediction System at the Institute of Meteorology and Water Management - National Research Institute, Meteorology, Hydrology and Water Management, 5 (2), 43-51, DOI: 10.26491/mhwm/71048.
  • Herrington A.R., Reed K.A., 2017, An explanation for the sensitivity of the mean state of the community atmosphere model to horizontal resolution on aquaplanets, Journal of Climate, 30 (13), 4781-4797, DOI: 10.1175/JCLI-D-16-0069.1.
  • Herrington A.R., Reed K.A., 2020, On resolution sensitivity in the community atmosphere model, Quarterly Journal of the Royal Meteorological Society, 146 (733), 3789-3807, DOI: 10.1002/qj.3873.
  • Łuszczewski H., Tuszyńska I., 2022, Derecho radar analysis of August 11, 2017, Meteorology, Hydrology and Water Management, DOI: 10.26491/mhwm/152504.
  • Markowski P.M., Straka J.M., Rasmussen E.N., Blanchard D.O., 1998, Variability of Storm-Relative Helicity during VORTEX, Monthly Weather Review, 126 (11), 2959-2971, DOI: 10.1175/1520-0493(1998)1262.0.CO;2.
  • Potvin C.K., Flora M.L., 2015, Sensitivity of idealized supercell simulations to horizontal grid spacing: Implications for Warn-onForecast, Monthly Weather Review, 143 (8), 2998-3024, DOI: 10.1175/MWR-D-14-00416.1.
  • Rasmussen E.N., Blanchard D.O., 1998, A baseline climatology of sounding-derived supercell and tornado forecast parameters, Weather and Forecasting, 13 (4), 1148-1164, DOI: 10.1175/1520-0434(1998)0132.0.CO;2.
  • Sulik S., Kejna M., 2020, The origin and course of severe thunderstorm outbreaks in Poland on 10 and 11 August, 2017, Bulletin of Geography. Physical Geography Series, 18, 25-39, DOI: 10.2478/bgeo-2020-0003.
  • Sun S., Zhou B., Xue M., Zhu K., 2021, Scale-similarity subgrid-scale turbulence closure for supercell simulations at kilometerscale resolutions: comparison against a large-eddy simulation, Journal of Atmospheric Sciences, 78 (2), 417-437, DOI: 10.1175/JAS-D-20-0187.1.
  • Surowiecki A., Taszarek M., 2020, A 10-year radar-based climatology of mesoscale convective system archetypes and derechos in Poland, Monthly Weather Review, 148 (8), 3471-3488, DOI: 10.1175/MWR-D-19-0412.1.
  • Taszarek M., Pilguj N., Orlikowski J., Surowiecki A., Walczakiewicz S., Pilorz, W., Piasecki, K., Pajurek, Ł., Półrolniczak M., 2019, Derecho evolving from a mesocyclone - a study of 11 August 2017 severe weather outbreak in Poland: event analysis and high-resolution simulation, Monthly Weather Review, 147 (6), 2283-2306, DOI: 10.1175/MWR-D-18-0330.1.
  • Thompson R.L., Smith B.T., Grams J.S., Dean A.R., Broyles C., 2012, Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments, Weather and Forecasting, 27 (5), 1136- 1154, DOI: 10.1175/WAF-D-11-00116.1.
  • Tiedtke M., 1989, A comprehensive mass flux scheme for cumulus parameterization in large-scale models, Monthly Weather Review, 117 (8), 1779-1799, DOI: 10.1175/1520-0493(1989)1172.0.CO;2.
  • Weijenborg C., Chagnon J.M., Friederichs P., Gray S.L., Hense A., 2017, Coherent evolution of potential vorticity anomalies associated with deep moist convection, Quarterly Journal of the Royal Meteorological Society, 143 (704), 1254-1267, DOI: 10.1002/qj.3000.
  • Wicker L.J., Kain J., Weiss S., Bright D., 2005, A brief description of the supercell detection index, Technical Report, NOAA/SPC, 10 pp.
  • Zängl G., Reinert, D., Ripodas P., Baldauf M., 2015, The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core, Quarterly Journal of the Royal Meteorological Society, 141 (687), 563-579, DOI: 10.1002/qj.2378.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b5401a1-88ac-4ddb-bf89-7f31a73f4304
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.