PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of direct reduction time of vanadium titanomagnetite concentrate on the preparation and photocatalytic performance of calcium titanate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effects of direct reduction time of vanadium titanomagnetite concentrate (VTCE) on the preparation and photocatalytic performance of calcium titanate were investigated in this study. It was found that extending the reduction time could not only promote the formation of calcium titanate, but also facilitate the reduction of iron minerals in the reduction products. The optimum reduction time was 180min under the conditions of CaCO3 dosage of 18wt%, reduction temperature of 1400℃ and lignite dosage of 70wt%. The reduced iron (Fe grade of 90.95wt%, Fe recovery of 92.21wt%) and calcium titanate were obtained via grinding-magnetic separation. Moreover, calcium titanate prepared via the direct reduction method could be used as a photocatalyst, where the degradation degree of methylene blue increased from 25.13% to 60.14% with the addition of calcium titanate. Furthermore, Langmuir Hinshelwood fitting results indicated that the degradation of methylene blue by the calcium titanate prepared under different reduction times conformed to first-order reaction kinetics, where the photocatalytic degradation rate of methylene blue was noted to be the highest for a reduction time of 180 min.
Rocznik
Strony
75--86
Opis fizyczny
Bibliogr. 33 poz., rys., wykr.
Twórcy
autor
  • University of Science and Technology, Beijing
autor
  • University of Science and Technology, Beijing
autor
  • University of Science and Technology, Beijing
autor
  • University of Science and Technology, Beijing
autor
  • University of Science and Technology, Beijing
Bibliografia
  • ANI, I., AKPAN, J. U. G., OLUTOYE, M. A., HAMEED, B. H., 2018. Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2-and ZnO-based photocatalysts: Recent development. Journal of cleaner production. 205, 930-954.
  • ALSAYEGH, S., JOHNSON, R. O., BURKHARD, J., WESSLING, M., 2019. Methanol production via direct carbon dioxide hydrogenation using hydrogen from photocatalytic water splitting: Process development and techno-economic analysis. Journal of cleaner production. 208, 1446-1458.
  • CHEN, C., SUN, T. C., WANG, X. P., HU, T. Y., 2017. Effects of MgO on the reduction of vanadium titanomagnetite concentrates with char. Journal of Minerals, Metals & Materials Society. 69(10), 1759-1766.
  • CHEN, S. Y. CHU. M. S., 2014. Metalizing reduction and magnetic separation of vanadium titano-magnetite based on hot briquetting. International Journal of Minerals Metallurgy Material. 21(3), 225-233.
  • DENG, B. P., SI, X., BAUMAN, L. J., RAO, M. J., PENG, Z. W., JIANG, T., LI, G. H., ZHAO, B. X., 2020. Photocatalytic activity of CaTiO3 derived from roasting process of bauxite residue. Journal of cleaner production. 244, 1-10.
  • HAN CHONG, 2010. Solid state synthesis and the photocatalytic performanceof CaTiO3. Northeast University. (In Chinese)
  • HOLLIDAY, S., STANISHEVSKY, A., 2004. Crystallization of CaTiO3 by sol-gel synthesis and rapid thermal processing. Surface and Coatings Technology. 188-189, 741-744.
  • IMTIAZ, M., RIZWAN, M., XIONG, S. L., LI, H. L., ASHRAF, M., SHAHZAD, S., 2015. Vanadium, recent advancements and research prospects: a review. Environment International. 80, 79-88.
  • LEI, X., XU. B., YANG, B., XU, B. B., GUO, X. T., 2017. A novel method of synthesis and microstructural investigation of calcium titanate powders, Journal of Alloys and Compounds. 690, 916-922.
  • LI, J., ZHANG, Y. C., WANG, T. X., ZHANG, M., 2011. Low temperature synthesis and optical properties of CaTiO3 nanoparticles from Ca(NO3)2•4H2O and TiO2 nanocrystals. Materials Letters. 65, 1556-1558.
  • LI, X. H., KOU, J., SUN, T. C., WU, S. C., ZHAO, Y. Q., 2019. Effects of temperature on Fe and Ti in carbothermic reduction of vanadium titanomagnetite with adding MgO. Physicochemical Problems of Mineral Processing. 55(4), 917-927.
  • LI, X. H., KOU, J., SUN, T. C., WU, S. C., ZHAO, Y. Q., 2020a. Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate. International Journal of Minerals Metallurgy Material. 27(3), 301-309.
  • LI, X. H., KOU, J., SUN, T. C., WU, S. C., ZHAO, Y. Q., 2020b. Formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate by adding CaCO3. International Journal of Minerals Metallurgy Material. 27(6), 745-753.
  • LI, Z., WANG, Z., LI, G., 2016. Preparation of nano-titanium dioxide from ilmenite using sulfuric acid-decomposition by liquid phase method. Powder Technology. 287, 256-263.
  • MAO, H. X., ZHANG, R. D., LV, X. L., BAI, C. G., HUANG, X. B., 2013. Effect of surface properties of iron ores on their granulation behavior. ISIJ International. 53(9), 19-23.
  • MAN, Y., FENG, J. X., LI, F. J., GE, Q. Y., CHEN, M., ZHOU, J. Z., 2014. Influence of temperature and time on reduction behavior in iron ore-coal composite pellets. Powder Technology. 256, 361-366.
  • PAN, F., DU. Z., ZHANG, M. J., SUN, H. Y., 2017. Relationship between the phases, structure, MgO migration and the reduction performance of the pre-oxidized vanadium-titanium magnetite ore in a fluidized bed. ISIJ International 57(3), 413-423.
  • PAN, P. W., CHEN, Y. W., 2007. Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catalysis Communications. 8, 1546-1549.
  • PALANIANDY, S., JAMIL, N. H., 2009. Influence of milling conditions on the mechanochemical synthesis of CaTiO3 nanoparticles. Journal of Alloys and Compounds. 476(1-2), 1-902.
  • SINGH, P., BORTHAKUR. A., 2018. A review on biodegradation and photocatalytic degradation of organic pollutants: A bibliometric and comparative analysis. Journal of cleaner production. 196, 1669-1680.
  • SREETHAWONG, T., LAEHSALEE, S., CHAVADEJ, S., 2009. Use of Pt/N doped mesoporous assembled nanocrystalline TiO2 for photocatalytic H2 production under visible light irradiation. Catalysis Communications. 10, 538-543.
  • SUN, Y. ZHENG, H. Y., DONG, Y., JIANG, X., SHEN, Y. S., SHEN, F. M., 2015. Melting and separation behavior of slag and metal phases in metallized pellets obtained from the direct-reduction process of vanadium-bearing titanomagnetite. International Journal of Mineral Processing. 142, 119-124.
  • WANG S S, ZHOU Y X, HAN S W, NONG, Y., 2018. Carboxymethyl cellulose stabilized zno/biochar nanocomposites: enhanced adsorption and inhibited photocatalytic degradation of methylene blue. Chemosphere Environmental Toxicology & Risk Assessment. 197, 20-25.
  • XIAO, Q., ZHANG, J., XIAO, C., 2008. Photocatalytic degradation of methylene blue over Co3O4/Bi2WO6 composite under visible light irradiation. Catalysis Communications. 9, 1247-1253.
  • YANG, F. L., HLAVACEK, V., 2000. Effective extraction of titanium from rutile by a low-temperature chloride process. Aiche Journal. 46(2), 355-360.
  • YI, L. Y., HUANG, Z. C., JIANG, T., 2013. Sticking of iron ore pellets during reduction with hydrogen and carbon monoxide mixtures: behavior and mechanism. Powder Technology. 235, 1001-1007.
  • YU, W. SUN, T. C., CUI, Q., XU, C. Y., KOU, J., 2015. Effect of coal type on the reduction and magnetic separation of a high-phosphorus oolitic hematite ore. ISIJ International. 55(3), 536-554.
  • YUE, X., LI, Q. Q., LI, B., ZHAO, L., WU, Y., YANG, T. Y., LIU, K., ZHANG, J. B., ZHU, N., 2019. Novel CS2 storage materials from ion-like liquids for one-step synthesis of active nano-metal sulfides in the photocatalytic reduction of CO2. Journal of cleaner production. 237, 1-9.
  • ZHANG, H. J., CHEN, G. G., LI, Y. X., TENG, Y. J., 2012. Electronic structure and photocatalytic properties of copperdoped CaTiO3. Journal of Alloys and Compounds. 516, 91-95.
  • ZHAO, H. Y., DUAN, Y. W., SUN, X., 2013. Synthesis and characterization of CaTiO3 particles with controlled shape and size. New Journal of Chemistry, 37(4), 986-991.
  • ZHANG, J., ZHANG, H. W., XUE, Z. L., 2017. Oxidation Kinetics of Vanadium Slag Roasting in the Presence of Calcium Oxide, Mineral Processing and Extractive Metallurgy Review. 38, 1-9.
  • ZHANG, Y. B., LU, M. M., ZHOU, Y. L., SU, Z. J., LIU, B. B., LI, G. H., JIANG, T. 2018. Interfacial interaction between humic acid and vanadium, titanium-bearing magnetite (VTM) particles. Mineral Processing and Extractive Metallurgy Review. 2, 1–10.
  • ZHAO, Y. Q., SUN, T. C., ZHAO, H. Y., CHEN, C., WANG. X. P., 2019. Effect of reductant type on the embedding direct reduction of beach titanomagnetite concentrate. International Journal of Minerals Metallurgy Material. 26(2), 152-159.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b4e2b5c-835d-4fae-be36-679dc0faf670
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.