PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of multiple passes through a dynamic membrane on the properties of w/o emulsions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Conventional membranes used in the process of premix membrane emulsification are prone to fouling, especially when biopolymers are employed as surfactants. An alternative to conventional membranes are dynamic membranes consisting of an unconsolidated porous medium. Dynamic membranes have the advantage of enabling easy cleaning of the inside of the pores. Experimental research carried out to date has focused on the application of hydrophilic dynamic membranes composed of glass microbeads for producing o/w emulsions. The aims of this study were to determine the efficiency of droplet size reduction in a w/o emulsion when passed through a dynamic hydrophobic membrane consisting of a bed of irregular polymer particles, and to assess the effect of multiple membrane passes on the properties of the w/o emulsion. The dynamic membranes evaluated in the tests were found to reduce the diameters of premix droplets when an appropriate pressure level was reached. Higher bed porosity was associated with greater fluxes achieved across the packed bed, but the resulting emulsions were less homogeneous. Multiple passes of the emulsion through the dynamic polypropylene membrane led to a further reduction in droplet size, but it was accompanied by a decline in emulsion homogeneity.
Rocznik
Strony
449--459
Opis fizyczny
Bibliogr. 22 poz., tab., rys.
Twórcy
  • Poznan University of Technology, Institute of Chemical Technology and Engineering, ul. Berdychowo 4, 60-965 Poznań, Poland
  • Poznan University of Technology, Institute of Chemical Technology and Engineering, ul. Berdychowo 4, 60-965 Poznań, Poland
Bibliografia
  • 1. Bagheri G.H., Bonadonna C., Manzella I., Vonlanthen P., 2015. On the characterization of size and shape ofirregular particles. Powder Technol., 270, 141–153. DOI: 10.1016/j.powtec.2014.10.015.
  • 2. Cox E.P., 1927. A method of assigning numerical and percentage values to the degree of roundness of sand grains. J. Paleontol., 1, 179–183.
  • 3. Eisinaite V., Juraite D., Schroën K., Leskauskaite D., 2016. Preparation of stable food-grade double emulsions with a hybrid premix membrane emulsification system. Food Chem., 206, 59–66. DOI: 10.1016/j.foodchem.2016. 03.046.
  • 4. Kaade W., Güell C., Ballon A., Mellado-Carretero J., De Lamo-Castellví S., Ferrando M., 2020. Dynamic membranes of tunable pore size for lemon oil encapsulation. LWT Food Sci. Technol., 123, 109090. DOI: 10.1016/j.lwt.2020.109090.
  • 5. Ladjal Ettoumi Y., Berton-Carabin C., Chibane M., Schroën K., 2017. Legume protein isolates for stable acidic emulsions prepared by premix membrane emulsification. Food Biophys., 12, 119–128. DOI: 10.1007/s11483-017-9471-x.
  • 6. Laouini A., Charcosset C., Fessi H., Schroen K., 2014. Use of dynamic membranes for the preparation of vitamin E-loaded lipid particles: An alternative to prevent fouling observed in classical cross-flow emulsification. Chem. Eng. J., 236, 498–505. DOI: 10.1016/j.cej.2013.10.053.
  • 7. McClements D.J., 2004. Emulsion formation, In: Food Emulsions: Principles, Practice, and Techniques. 2nd edition, CRC Press, 233–268. DOI: 10.1201/9781420039436.
  • 8. Nazir A., Boom R.M., Schroën K., 2013. Droplet break-up mechanism in premix emulsification using packed beds. Chem. Eng. Sci., 92, 190–197. DOI: 10.1016/j.ces.2013.01.021.
  • 9. Nazir A., Boom R.M., Schroën K., 2014. Influence of the emulsion formulation in premix emulsification using packed beds. Chem. Eng. Sci., 116, 547–557. DOI: 10.1016/j.ces.2014.05.009.
  • 10. Nazir A., Vladisavljević G.T., 2021. Droplet breakup mechanisms in premix membrane emulsification and related microfluidic channels. Adv. Colloid Interface Sci., 290, 102393. DOI: 10.1016/j.cis.2021.102393.
  • 11. Pal R., 1996. Effect of droplet size on the rheology of emulsions. AlChE J., 42, 3181–3190. DOI: 10.1002/aic.690421119.
  • 12. Sahin S., Sawalha H., Schroën K., 2014. High throughput production of double emulsions using packed bed premixemulsification. Food Res. Int., 66, 78–85. DOI: 10.1016/j.foodres.2014.08.025.
  • 13. Sawalha H., Sahin S., Schroën K., 2016. Preparation of polylactide microcapsules at a high throughput with a packed-bed premix emulsification system. J. Appl. Polym. Sci., 133, 43536. DOI: 10.1002/app.43536.
  • 14. Sotoyama K., Asano Y., Ihara K., Takahashi K., Doi K., 1999. Water/oil emulsions prepared by the membranę emulsification method and their stability. J. Food Sci., 64, 211–215. DOI: 10.1111/j.1365-2621.1999.tb15867.x.
  • 15. Stanisz A., 2007. Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny. StatSoft Polska, Kraków. Suzuki K., Fujiki I., Hagura Y., 1998. Preparation of corn oil/water and water/corn oil emulsions using PTFE membranes. Food Sci. Technol. Int., Tokyo, 4, 164–167. DOI: 10.3136/fsti9596t9798.4.164.
  • 16. Suzuki K., Fujiki I., Hagura Y., 1998. Preparation of corn oil/water and water/corn oil emulsions using PTFE membranes. Food Sci. Technol. Int., Tokyo, 4, 164–167. DOI: 10.3136/fsti9596t9798.4.164.
  • 17. Suzuki K., Shuto I., Hagura Y., 1996. Characteristics of the membrane emulsification method combined with preliminary emulsification for preparing corn oil-in-water emulsions. Food Sci. Technol. Int., Tokyo, 2, 43–47. DOI: 10.3136/fsti9596t9798.2.43
  • 18. van der Zwan E.A., Schroën C.G.P.H., Boom R.M., 2008. Premix membrane emulsification by using a packed layer of glass beads. AIChE J., 54, 2190–2197. DOI: 10.1002/aic.11508.
  • 19. Vladisavljević G.T., Williams R.A., 2005. Recent developments in manufacturing emulsions and particulate prod- ucts using membranes. Adv. Colloid Interface Sci., 113, 1–20. DOI: 10.1016/j.cis.2004.10.002.
  • 20. Wang J., Ballon A., Schroën K., de Lamo-Castellví S., Ferrando M., Güell C., 2021a. Polyphenol loaded W1/O/W2 emulsions stabilized with lesser mealworm (Alphitobius diaperinus) protein concentrate produced by membrane emulsification: stability under simulated storage, process, and digestion conditions. Foods, 10, 2997. DOI: 10.3390/foods10122997.
  • 21. Wang J., Jousse M., Jayakumar J., Fernández-Arteaga A., de Lamo-Castellví S., Ferrando M., Güell C., 2021b. Black soldier fly (Hermetia illucens) protein concentrates as a sustainable source to stabilize O/W emulsions produced by a low-energy high-throughput emulsification technology. Foods, 10, 1048. DOI: 10.3390/foods10051048.
  • 22. Wang J., Martínez-Hernández A., de Lamo-Castellví S., Romero M.-P., Kaade W., Ferrando M., Güell C., 2020. Low-energy membrane-based processes to concentrate and encapsulate polyphenols from carob pulp. J. Food Eng., 281, 109996. DOI: 10.1016/j.jfoodeng.2020.109996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b4af8d9-06ab-47aa-8b22-1f45d5e27fdf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.