PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Global existence and blow up of solution for semi-linear hyperbolic equation with the product of logarithmic and power-type nonlinearity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we consider the semilinear wave equation with the multiplication of logarithmic and polynomial nonlinearities. We establish the global existence and finite time blow up of solutions at three different energy levels (E(0) < d, E(0) = d and E(0) > 0) using potential well method. The results in this article shed some light on using potential wells to classify the solutions of the semilinear wave equation with the product of polynomial and logarithmic nonlinearity.
Rocznik
Strony
111--130
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
  • College of Automation Harbin Engineering University 150001, People's Republic of China
  • Department of Mathematics and Physics North South University Dhaka-1229, Bangladesh
autor
  • College of Automation College of Mathematical Sciences Harbin Engineering University 150001, People's Republic of China
Bibliografia
  • [1] M.M. Al-Gharabli, S.A. Messaoudi, Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term, J. Evol. Equ. 18 (2018), 105-125.
  • [2] J.M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. 28 (1977), 473-486.
  • [3] J.D. Barrow, P. Persons, Inflationary models with logarithmic potentials, Phys. Rev. D 52 (1970), 5576.
  • [4] K. Bartkowski, P. Gorka, One dimensional Klein-Gordon equation with logarithmic nonlinearities, J. Phys. A 41 355201 (2008), 1-11.
  • [5] I. Bialynicki-Birula, J. Mycielski, Gaussons: Solitons of the logarithmic Schrodinger equation, Phys. Scr. 20 (1979), 539-544.
  • [6] H. Buljan, A. Siber, M. Soljacic, T. Schwartz, M. Segev, D.N. Christodoulides, Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media, Phys. Rev. E 68 (2003), 1-5.
  • [7] T. Cazenave, A. Haraux, Equations d'evolution avec non-linearite logrithmique, Ann. Fac. Sci. Toulouse Math. 2 (1980), 21-51.
  • [8] J.A. Esquivel-Avila, The dynamics of a nonlinear wave equation, J. Math. Anal. Appl. 279 (2003), 135-150.
  • [9] F. Gazzola, M. Squassina, Global solutions and finite time blow up for damped se.miline.ar wave equations, Ann. I. H. Poincare Anal. Non Lineaire 23 (2006), 185-207.
  • [10] P. Gorka, Logarithmic Klein-Gordon equation, Acta Phys. Polon. B 40 (2009), 59-66.
  • [11] X.S. Han, Global exitence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics, Bull. Korean Math. Soc. 50 (2013), 275-283.
  • [12] T. Hiramatsu, M. Kawasaki, F. Takahashi, Numerical study of Q-ball formation in gravity mediation, J. Cos. Astr. Phys. 6 (2010).
  • [13] Q. Hu, H. Zhang, G. Liu, Global exitence and exponential growth of the solution for the logarithmic Boussinesq-type equation, J. Math. Anal. Appl. 436 (2016), 990-1001.
  • [14] W. Krolikowski, D. Edmundson, O. Bang, Unified model for partially coherent solitons in logarithmically nonlinear media, Phys. Rev. E 61 (2000), 3122-3126.
  • [15] H.A. Levine, Instability and non-existence of global solutions to nonlinear wave equations of the form Putt = -Au + F(u), Trans. Amer. Math. Soc. 192 (1974), 1-21.
  • [16] H.A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal. 5 (1974), 138-146.
  • [17] W. Lian, M.S. Ahmed, R. Xu, Global existence and blow up of solution for semilinear hyperbolic equation with logarithmic nonlinearity, Nonlinear Anal. 184 (2019), 239-257.
  • [18] A.D. Linde, Strings, textures, inflation and spectrum bending, Phys. Lett. B284 (1992), 215-222.
  • [19] Y. Liu, On potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differential Equations 192 (2003), 155-169.
  • [20] Y. Liu, R. Xu, Nonlinear wave equations and reaction-diffusion equations with several nonlinear source terms of different signs, Discrete Contin. Dyn. Syst. Ser. B 7 (2007), 171-189.
  • [21] Y. Liu, J. Zhao, On potential wells and applications to semolinear hyperbolic equations and parabolic equations, Nonlinear Anal. 64 (2006), 2665-2687.
  • [22] S. De Martino, M. Falanga, C. Godon, G. Lauro, Logarithmic Schroinger-like equation as a model for magma transport, Europhys. Lett. 63 (2003), 472-475.
  • [23] E.M. Maslov, Pulsons, bubbles and the corresponding nonlinear wave equations in n + 1 dimensions, Phys. Lett. A 151 (1990), 47-51.
  • [24] L.E. Payne, D.H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math. 22 (1975), 273-303.
  • [25] P. Pucci, J. Serrin, Some new results on global nonexistence for abstract evolution equations with positive initial energy, J. Differential Equations 150 (1998), 203-214.
  • [26] D.H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal. 30 (1968), 148-172.
  • [27] B. Straughan, Further global nonexistence theorems for abstract nonlinear wave equations, Proc. Amer. Math. Soc. 48 (1975), 381-390.
  • [28] Y. Wang, A suffiecient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Proc. Amer. Math. Soc. 136 (2008), 3477-3482.
  • [29] R. Xu, Initial boundary value problem of a se.miline.ar hyperbolic equations and parabolic equations witn critical initial data, Quart. J. Math. 68 (2010), 459-468.
  • [30] R. Xu, Y. Ding, Global solution and finite time blow up for damped Klein-Gordon equation, Acta Math. Sci. Ser. A (Chin. Ed.) 33 (2013), 643-652.
  • [31] R. Xu, X. Wang, H. Xu, M. Zhang, Arbitrary energy global existence for wave equation with combined power-type nonlinearities of different signs, Bound Value Probl. (2016), Article number: 214.
  • [32] R. Xu, Y. Yang, B. Liu, J. Shen, S. Huang, Global existence and blow up of solutions for the multidimensional sixth-order "good" Boussinesq equation, Z. Angew. Math. Phys. 66 (2015), 955-976.
  • [33] H. Zhang, G. Liu, Q. Hu, Exponential decay of energy for a logarithmic wave equation, J. Partial Differential Equation 28 (2015), 269-277.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b435336-c979-4d66-994c-733a04df16ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.