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Abstract. In this paper we consider the semilinear wave equation with the multiplication of
logarithmic and polynomial nonlinearities. We establish the global existence and finite time
blow up of solutions at three different energy levels (E(0) < d, E(0) = d and E(0) > 0) using
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1. INTRODUCTION

In this contribution, we would like to study the initial boundary value problem of
a semilinear wave equation with polynomial nonlinearity of the factor of logarithmic
term





utt −4u = |u|p ln |u|, x ∈ Ω, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω, t > 0,

(1.1)

where Ω ⊂ Rn is a smooth bounded domain and 1 < p < ∞ if n = 1, 2 and
2 < p < 4

n−2 (3 ≤ n ≤ 5) are constants, u0(x) and u1(x) are given initial data. One of
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the most important nonlinear evolution equations are the semilinear hyperbolic equa-
tions in the field of mathematical physics and engineering. This type of nonlinearities
appear naturally in inflation cosmology and supersymmetric field theory (see [3, 18]).
Furthermore, there are applications in many branches of physics such as nuclear
physics, optics and geophysics (see [6, 14,22]). For the problem under consideration,
according to available literature, some special analytical solutions can be obtained in
the logarithmic quantum mechanics (see [5, 23]). For instance, this model has a large
set of oscillating localized solutions.

We start the literature review with the pioneer work of Sattinger [26] in which
potential well W was first introduced to study the following initial boundary value
problem of semilinear wave equation with polynomial nonlinearity





utt −4u = f(u), x ∈ Ω, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω, t > 0,

(1.2)

and showed u(t) ∈W for every t when u0 inside the potential well W and E(0) < d,
where E(0) is the initial energy and d is the depth of potential well. The class of
initial data was precisely specified for which global existence and finite time blow up
of the solutions were investigated. Payne and Sattinger [24] treated the case while
u0 lies outside the potential well W and proved that the solutions of problem (1.2)
blows up in finite time. Illustrative explanations of the potential well W was given
by certain differential-integral inequalities and found the existence of saddle point of
the potential energy functionals J . In [15] the technique was first introduced to prove
global nonexistence of solution for an abstract problem which includes (1.2). In [2]
a stronger result was obtained for (1.2), namely pointwise blow up in finite time. The
case of definitely positive initial energy was considered in [16] and [27] by proving
a blowup (global nonexistence) that depends on the condition (u0, u1) ≥ 0. Liu Yacheng
[19] improved previous results proposing a new method that is the so-called family
of potential wells which includes single potential well W as a particular case. All
solutions of problem (1.2) with the typical form of the source term f(u) = |u|p−1u
were proved that the solutions can be only either inside of a smaller ball or outside of
some bigger balls of space H1

0 (Ω) under low initial energy, i.e., E(0) < d and can never
be located in the vacuum isolating region. Liu Yacheng, Zhao Junsheng [21] proved
the threshold result of global existence and non-existence by family of potential wells
for problem (1.2) with critical conditions I(u0) ≥ 0, E(0) = d. The authors [20], for
the first time, deal problem (1.2) with combined power type nonlinearities of different
sign and investigated global existence of solutions under critical initial conditions
I(u0) ≥ 0, E(0) = d. Xu [29] handled the case considering typical form of source
term f(u) = |u|p−1u for critical initial data I(u0) < 0, E(0) = d adding (u0, u1) ≥ 0,
and showed problem (1.2) does not have any global solution, i.e., the nonexistence of
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the solutions. Filippo Gazzola and Marco Squassina [9] studied the following damped
semilinear wave equations





utt −4u− ω4ut + µut = |u|p−2u in [0, T ]× Ω,
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,
u(x, t) = 0 on [0, T ]× ∂Ω.

(1.3)

When ω = 0, µ = 0, then this problem turns into very classical undamped problem
(1.2) which was studied by many authors [19, 21, 24, 29]. When ω = 0, µ ≥ 0, the
finite time blow up result was acquired for this problem with arbitrarily high initial
energy in an open bounded Lipschitz subset of Rn(see [9], Theorem 3.12, Theorem
3.13). Their results also hold for the case ω = 0, µ = 0. Yanjin Wang [28] extended
the result of blow up in finite time to the whole space Rn at arbitrarily positive initial
energy for the nonlinear Klein-Gordon equation of the form

utt −4u+m2u = f(u), (t, x) ∈ [0, T )× Rn.

There are lots of investigation at high initial energy level (see, e.g., [8, 25, 30–32]).
All the study above was on polynomial nonlinearity.

Let us go to view some work with logarithmic nonlinearity which gives impetus to
study problem (1.1). In [7], Cazenave and Haraux first dealt with the Cauchy problem
(1.1) with logarithmic nonlinearity in R3 and found the existence and uniqueness of
the solutions. The Cauchy problem (1.1) with u plus restricting logarithmic term was
treated by Bartkowski and Gorka [4] where they obtained the existence of classical
solutions. Gorka [10] inquired the following initial boundary value problem





utt −4u = −u+ εu log |u|2, x ∈ Ω, t ∈ (0, T ),
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

(1.4)

where Ω is a finite interval Ω = [a, b] and parameter ε ∈ [0, 1] fixed. The existence
of weak solution was proved for all u0 ∈ H1

0 (Ω), u1 ∈ L2(Ω) by using compactness
method. Hiramatus et.al [12] introduced the following equation

utt −4u+ u+ ut + u|u|2 = u ln |u|, x ∈ Ω, t > 0, (1.5)

for studying the dynamics of Q-ball in theoretical physics. A numerical research was
given in that work. For the initial boundary value problem of (1.5), Han [11] obtained
the global existence of weak solution in R3, and Zhang et al. [33] proved the decay
estimate of energy for this problem in finite dimensional case. In [13], the authors
studied logarithmic Boussinesq-type equation, and got the global existence and expo-
nential growth of the solution in the potential well under sub-critical initial energy
(E(0) < d). Recently in [1], the authors treated the following problem





utt −42u+ u+ h(ut) = ku log |u|, x ∈ Ω, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
u(x, t) = ∂u

∂v (x, t) = 0, x ∈ ∂Ω, t > 0,
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and found the global existence and decay rate of the solution using the multiplier
method in R2. From the above literature survey we were first motivated to work with
problem (1.1) besides the power-type term |u|p−1 and got some interesting result about
global existence and blowup time of the solutions (see [17]). Although, above studies are
pioneer about consistence of the wave function with either polynomial or logarithmic
nonlinearity, there are no investigation considering the polynomial nonlinearity with
the factor of logarithmic term. All the investigations above, however, motivate us to
consider such fundamental model of wave equations in the present paper to see what
kind of conclusions we can have for problem (1.1) with the product of logarithmic and
polynomial nonlinearity. Moreover, we investigate the problem (1.1) using so-called
potential well method which has been one of the most important and sophisticated
methods for studying nonlinear evolution equations. Finally, for the first time, we
go to search global existence and blowup time of solutions of (1.1) at three different
energy level cases, i.e., (E(0) < d, E(0) = d and E(0) > 0). We can summarize our
main results in Table 1 in which “X” will represent successful investigation and “?”
for open problem.

Table 1. Essence
Initial energy level Global existence Finite time blow up

0 < E(0) < d X X
E(0) = d X X
E(0) > 0 ? X

This paper is organized as follows. In Section 2 some preliminaries and necessary
lemmas are included. Moreover, potential wells, their properties are also described
here. Section 3 summarises the key result under the condition of E(0) < d. The result
under the condition E(0) = d is demonstrated in Section 4. Furthermore, in Section 5
main result and proofs are given under E(0) > 0.

2. PRELIMINARIES

We commence this section by introducing the norms ‖ · ‖p = ‖ · ‖Lp(Ω), ‖ · ‖ = ‖ · ‖L2(Ω)
and the inner product (u, v) =

∫
Ω uvdx.

A weak solution u(x, t) of problem (1.1) on Ω× [0, T ) by which we mean

u ∈ C
(
[0, T ];H1

0 (Ω)
)
∩ C1 ([0, T ];L2(Ω)

)
, utt ∈

(
[0, T ];H−1(Ω)

)

such that u(x, 0) = u0(x) in H1
0 (Ω), ut(x, 0) = u1(x) in L2(Ω) and there holds

(ut, v) +
t∫

0

(∇u,∇v)dτ =
t∫

0

(|u|p ln |u|, v)dτ + (u1, v) (2.1)

for any v ∈ H1
0 (Ω), t ∈ [0, T ) and u holds the following energy inequality

E(t) ≤ E(0) for every t ∈ [0, T ), (2.2)
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where

E(t) = 1
2‖ut‖

2 + 1
2‖∇u‖

2 − 1
p+ 1

∫

Ω

|u|p+1 ln |u|dx+ 1
(p+ 1)2 ‖u‖

p+1
p+1

and

E(0) = 1
2‖u1‖2 + 1

2‖∇u0‖2 −
1

p+ 1

∫

Ω

|u0|p+1 ln |u0|dx+ 1
(p+ 1)2 ‖u0‖p+1

p+1.

2.1. POTENTIAL WELLS

In this section, we shall set up the corresponding method of potential wells and series
of their properties, which will be used to prove the theorems in all the sections.

First of all, we define two C1 functionals on H1
0 (Ω), known as potential energy

functional and Nehari functional respectively as follows

J(u) = 1
2‖∇u‖

2 − 1
p+ 1

∫

Ω

|u|p+1 ln |u|dx+ 1
(p+ 1)2 ‖u‖

p+1
p+1 (2.3)

and

I(u) = ‖∇u‖2 −
∫

Ω

|u|p+1 ln |u|dx. (2.4)

Then it is obvious that

J(u) = p− 1
2(p+ 1)‖∇u‖

2 + 1
p+ 1I(u) + 1

(p+ 1)2 ‖u‖
p+1
p+1 (2.5)

and

E(t) = 1
2‖ut‖

2 + J(u)

= 1
2‖ut‖

2 + p− 1
2(p+ 1)‖∇u‖

2 + 1
p+ 1I(u) + 1

(p+ 1)2 ‖u‖
p+1
p+1. (2.6)

We also define Nehari manifold as

N (u) = {u ∈ H1
0 (Ω)| I(u) = 0, ‖∇u‖2 6= 0}

and the depth of the potential well or the mountain pass level

d = inf
u∈N

J(u), (2.7)

which will be figured out to be positive later.
Now, we define the potential well

W ={u ∈ H1
0 (Ω) | I(u) > 0, J(u) < d} ∪ {0}
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and the outer of the potential well

V ={u ∈ H1
0 (Ω) | I(u) < 0, J(u) < d}.

Next, we try to extend the above single potential well to the family of potential wells
by extending the above functional to following ones for δ > 0

Jδ(u) = δ

2‖∇u‖
2 − 1

p+ 1

∫

Ω

|u|p+1 ln |u|dx+ 1
(p+ 1)2 ‖u‖

p+1
p+1

and

Iδ(u) = δ‖∇u‖2 −
∫

Ω

|u|p+1 ln |u|dx.

Also corresponding Nehari manifolds

Nδ(u) = {u ∈ H1
0 (Ω) | Iδ(u) = 0, ‖∇u‖2 6= 0}

and depth of family of potential wells

d(δ) = inf
u∈Nδ

J(u). (2.8)

With the aid of the above functionals we introduce the family of potential wells

Wδ = {u ∈ H1
0 (Ω) | Iδ(u) > 0, J(u) < d(δ)} ∪ {0}

and the outer of the family of potential wells

Vδ = {u ∈ H1
0 (Ω) | Iδ(u) < 0, J(u) < d(δ)}.

To study problem (1.1) in critical case we need to define the following set

V ′ ={u ∈ H1
0 (Ω) | I(u) < 0}.

The lemma stated below informs that the functional J(λu) has a unique positive
critical point λ = λ∗.
Lemma 2.1. For any u ∈ H1

0 (Ω), ‖u‖ 6= 0 and let g(λ) = J(λu), then the following
assertions hold:
(i) limλ→0 J(λu) = 0, limλ→+∞ J(λu) = −∞,
(ii) in the interval 0 < λ < +∞ there exists a unique λ∗ = λ∗(u) such that

d

dλ
J(λu) |λ=λ∗= 0,

(iii) J(λu) is increasing on 0 ≤ λ ≤ λ∗, decreasing on λ∗ ≤ λ < +∞ and takes the
maximum at λ = λ∗,

(iv) in the other words, I(λ∗u) = 0 and I(λu) = λ d
dλJ(λu) > 0 for 0 < λ < λ∗,

I(λu) < 0 for λ∗ < λ < +∞.
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Proof. (i) We know that

g(λ) :=J(λu)

=1
2λ

2‖∇u‖2 − λp+1

p+ 1

∫

Ω

|u|p+1 ln |u|dx− λp+1

p+ 1 ln |λ|‖u‖p+1
p+1

+ λp+1

(p+ 1)2 ‖u‖
p+1
p+1.

Since ‖u‖ 6= 0, then clearly g(0) = 0, g(+∞) = −∞.
(ii) Taking derivative of g(λ) and making equals zero, we obtain

g′(λ) = d

dλ
J(λu) = λ‖∇u‖2 − λp

∫

Ω

|u|p+1 ln |u|dx− λp ln |λ|‖u‖p+1
p+1 = 0,

which is equivalent to

‖∇u‖2 = λp−1
∫

Ω

|u|p+1 ln |u|dx+ λp−1 ln |λ|‖u‖p+1
p+1. (2.9)

Let

l(λ) := λp−1
∫

Ω

|u|p+1 ln |u|dx+ λp−1 ln |λ|‖u‖p+1
p+1.

We can clearly perceive that l(λ) is increasing on 0 < λ <∞. Again, we have

lim
λ→0

l(λ) = −∞, lim
λ→∞

l(λ) =∞.

Therefore, there exists a unique λ0 such that l(λ0) = 0, l(λ) < 0 for 0 < λ < λ0 and
l(λ) > 0 for λ0 < λ <∞. Hence, for any ‖∇u‖ > 0 there exists a unique λ∗ > λ0 such
that (2.9) holds.

(iii) We have
d

dλ
J(λu) = λ

(
‖∇u‖2 − l(λ)

)
.

From the proof of (ii) it implies that if 0 < λ ≤ λ0, then l(λ) ≤ 0; if λ0 < λ < λ∗,
then 0 < l(λ) < ‖∇u‖2; if λ∗ < λ < ∞, then l(λ) > ‖∇u‖2. Hence, we arrive at
d
dλJ(λu) > 0 for 0 < λ < λ∗, d

dλJ(λu) < 0 for λ∗ < λ <∞. From this, the conclusion
of (iii) follows.

(iv) The conclusion follows from the proof of (iii) and

I(λu) = λ2‖∇u‖2 − λp+1
∫

Ω

|u|p+1 ln |λu|dx = λ
d

dλ
J(λu).
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The above lemma also tells N 6= ∅. The following lemma provides some crucial
features of the Nehari functional Iδ(u).

Lemma 2.2. Suppose δ > 0. We have the following statements:

(i) if 0 < ‖∇u‖ ≤ r(δ), then Iδ(u) > 0,
(ii) if Iδ(u) < 0, then ‖∇u‖ > r(δ),
(iii) if Iδ(u) = 0, then ‖∇u‖ > r(δ) or ‖∇u‖ = 0,

where r(δ) is the unique real root of equation φ(r) = δ,

φ(r) = Cp+2rp, C = sup
u∈H1

0 (Ω)

‖u‖p+2
‖∇u‖ .

Proof. (i) From 0 < ‖∇u‖ ≤ r(δ) we have ‖u‖p+2 > 0 and by
∫

Ω

|u|p+1 ln |u|dx < ‖u‖p+2
p+2 ≤ Cp+2‖∇u‖p+2 = φ(‖∇u‖)‖∇u‖2 ≤ δ‖∇u‖2

we obtain Iδ(u) > 0.
(ii) Iδ(u) < 0 gives

δ‖∇u‖2 <
∫

Ω

|u|p+1 ln |u|dx < ‖u‖p+2
p+2 ≤ φ(‖∇u‖)‖∇u‖2. (2.10)

From (2.10) we get ‖∇u‖ > r(δ).
(iii) If ‖∇u‖ = 0, then Iδ(u) = 0. If Iδ(u) = 0 and ‖∇u‖ 6= 0, then from

δ‖∇u‖2 =
∫

Ω

|u|p+1 ln |u|dx < ‖u‖p+2
p+2 ≤ φ(‖∇u‖)‖∇u‖2

we have ‖∇u‖ > r(δ).

The lemma below illustrates the depth of the potential well or the mountain pass
level.

Lemma 2.3. For d(δ) in (2.8) we have the following properties:

(i) d(δ) = a(δ)r2(δ) > 0 for 0 < δ < p+1
2 , a(δ) = 1

2 − δ
p+1 ,

(ii) there exists a unique δ0 > p+1
2 such that d(δ0) = 0, and d(δ) > 0 for 0 < δ < δ0,

(iii) d(δ) is strictly increasing on 0 < δ ≤ 1, decreasing on 1 ≤ δ ≤ δ0 and maximum
d = d(1) at δ = 1.
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Proof. (i) If Iδ(u) = 0 and ‖∇u‖ 6= 0, then by Lemma 2.2(iii) we have ‖∇u‖ > r(δ)
and using this, we get

J(u) =1
2‖∇u‖

2 − 1
p+ 1

∫

Ω

|u|p+1 ln |u|dx+ 1
(p+ 1)2 ‖u‖

p+1
p+1

=
(

1
2 −

δ

p+ 1

)
‖∇u‖2 + 1

p+ 1Iδ(u) + 1
(p+ 1)2 ‖u‖

p+1
p+1

>

(
1
2 −

δ

p+ 1

)
‖∇u‖2 + 1

p+ 1Iδ(u)

>a(δ)r2(δ) > 0.

(ii) For any u ∈ H1
0 (Ω), ‖∇u‖ 6= 0 and δ > 0, we define λ = λ(δ) such that

δλ2‖∇u‖2 = λp+1
∫

Ω

|u|p+1 ln |λu|dx. (2.11)

Then Iδ(λu) = 0 and

δ‖∇u‖2 = λp−1
∫

Ω

|u|p+1 ln |u|dx+ λp−1 ln |λ|‖u‖p+1
p+1. (2.12)

As Lemma 2.1 says, J(λu) is increasing on (0, λ∗), decreasing on [λ∗,+∞), and (i) of
this lemma gives d(δ) > 0 on (0, p+1

2 ). According to that λ(δ) is increasing on (0,+∞),
we know that for some a (in the next part a = 1 will be proved) d(δ) is increasing on
(0, a) and decreasing on [a, 0) and hence hits the δ-axis at some point δ0. Since (i) of
this lemma says, d(δ) > 0 on (0, p+1

2 ), thus δ0 > p+1
2 .

(iii) We prove that d(δ′) < d(δ′′) for any 0 < δ′ < δ′′ < 1 or 1 < δ′′ < δ′ < δ0.
Clearly it is sufficient to prove that for any 0 < δ′ < δ′′ < 1 or 1 < δ′′ < δ′ < δ0 and
any u ∈ H1

0 (Ω), Iδ′′(u) = 0 and ‖∇u‖ 6= 0 there exists a v ∈ H1
0 (Ω) and a constant

ε(δ′, δ′′) > 0 such that Iδ′(v) = 0, ‖∇v‖ 6= 0 and J(v) < J(u)− ε(δ′, δ′′). Actually, for
above u we can define λ(δ) by (2.11) such that Iδ(λ(δ)u) = 0, λ(δ′′) = 1 and (2.12)
holds. Let g(λ) = J(λu). Then

d

dλ
J(λu) = 1

λ
I(λu)

= 1
λ

(
(1− δ)‖∇(λu)‖2 + Iδ(λu)

)

= (1− δ)λ‖∇u‖2.

Taking v = λ(δ′)u, then Iδ′(v) = 0 and ‖∇v‖ 6= 0.
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If 0 < δ′ < δ′′ < 1, then since λ(δ) is increasing in δ,

J(u)− J(v) = g(1)− g(λ(δ′))
= g(λ(δ′′))− g(λ(δ′))
= (λ(δ′′)− λ(δ′)) g′(λ)
= (1− δ)λ(1− λ(δ′))‖∇u‖2

> (1− δ′′)λ(δ′)r2(δ′′)(1− λ(δ′))
≡ ε(δ′, δ′′) > 0.

If 1 < δ′′ < δ′ < δ0, then

J(u)− J(v) = g(1)− g(λ(δ′)) > (δ′′ − 1)λ(δ′′)r2(δ′′)(λ(δ′)− 1) ≡ ε(δ′, δ′′) > 0.

2.2. INVARIANT SETS

To obtain the invariant sets, the lemma below will be used.

Lemma 2.4. Let 0 < J(u) < d for some u ∈ H1
0 (Ω) and δ1 < 1 < δ2 are the two roots

of the equation d(δ) = J(u), then the sign of Iδ(u) are unchangeable for δ1 < δ < δ2.

Proof. Firstly, J(u) > 0 implies that ‖∇u‖ 6= 0. Arguing by contradiction, we suppose
that the sign of Iδ(u) are changeable for δ1 < δ < δ2, then there exists a δ̄ ∈ (δ1, δ2)
such that Iδ̄(u) = 0. Hence, by the definition of d(δ), we have J(u) ≥ d(δ̄) which
contradicts

J(u) = d(δ1) = d(δ2) < d(δ̄).

Theorem 2.5 (Invariant sets). Let u0 ∈ H1
0 (Ω) and u1(x) ∈ L2(Ω). Assume that

0 < e < d, δ1 < δ2 are the two roots of equation d(δ) = e, then

(i) all solutions of problem (1.1) with 0 < E(0) ≤ e belong to Wδ for δ1 < δ < δ2,
provided I(u0) > 0 or ‖∇u0‖ = 0,

(ii) all solutions of problem (1.1) with 0 < E(0) ≤ e belong to Vδ for δ1 < δ < δ2,
provided I(u0) < 0.

Proof. (i) Let u(t) be any solution of problem (1.1) with E(0) = e and I(u0) > 0 or
‖∇u0‖ = 0, T be the existence time of u(t). If ‖∇u0‖ = 0, then clearly u0(x) ∈Wδ for
0 < δ < δ0. Since I(u0) > 0 and by Lemma 2.4 the sign of Iδ(u) is unchangeable
for δ1 < δ < δ2, so we have Iδ(u0) > 0 for δ ∈ (δ1, δ2). From the energy equality

1
2‖u1‖2 + J(u0) = E(0) ≤ d(δ1) = d(δ2) < d(δ), δ ∈ (δ1, δ2) (2.13)

we have J(u0) < d(δ), i.e., u0(x) ∈Wδ for δ1 < δ < δ2. Next, we prove u(t) ∈Wδ for
δ1 < δ < δ2 and 0 < t < T , where T is the maximal existence time of u(t). Arguing by
contradiction, we suppose that there must exist a t0 ∈ (0, T ) such that u(t0) ∈ ∂Wδ
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for some δ ∈ (δ1, δ2), i.e., Iδ(u(t0)) = 0, ‖∇u(t0)‖ 6= 0 or J(u(t0)) = d(δ). From the
energy inequality (2.2)

1
2‖ut‖

2 + J(u) ≤ E(0) < d(δ), t ∈ (0, T ), δ ∈ (δ1, δ2), (2.14)

we see that J(u(t0)) = d(δ) is impossible. On the other hand, if Iδ(u(t0)) = 0 and
‖∇u(t0)‖ 6= 0, then by the definition of d(δ) we have J(u(t0)) ≥ d(δ) which contradicts
(2.14).

(ii) The proof is similar to (i) of this theorem.

In fact, we have the following result.
Theorem 2.6. All nontrivial solutions of problem (1.1) with E(0) = 0 belong to

Bcr0 =
{
u ∈ H1

0 (Ω)
∣∣∣∣∣ ‖∇u‖ ≥ r0 :=

(
1

Cp+2

) 1
p

}
.

Proof. Let u(t) be the any solution of problem (1.1) with E(0) = 0, T be the existence
time of u(t). From the energy inequality (2.2) we have

1
2‖ut‖

2 + J(u) ≤ E(0) = 0,

which means that J(u) ≤ 0 for 0 ≤ t < T . Hence by (2.5) we have
p− 1

2(p+ 1)‖∇u‖
2 + 1

p+ 1I(u) + 1
(p+ 1)2 ‖u‖

p+1
p+1 ≤ 0,

which implies I(u) ≤ 0. So by definition of I(u) we have

‖∇u‖2 ≤
∫

Ω

|u|p+1 ln |u|dx ≤ ‖u‖p+2
p+2 ≤ Cp+2‖∇u‖p‖∇u‖2, 0 ≤ t < T.

From this we must have either ‖∇u‖ = 0 or ‖∇u‖ ≥ r0. If ‖∇u0‖ = 0, then ‖∇u‖ ≡ 0
for 0 ≤ t < T . Otherwise there exists a t0 ∈ (0, T ) such that 0 < ‖∇u(t0)‖ < r0. By
similar logics we can prove that if ‖∇u0‖ ≥ r0, then ‖∇u‖ ≥ r0 for 0 < t < T .

Theorem 2.7. Let u0(x) ∈ H1
0 (Ω) and u1(x) ∈ L2(Ω). Assume that E(0) < 0 or

E(0) = 0, ‖∇u0‖ 6= 0, then all solutions of problem (1.1) belong to Vδ for 0 < δ < p+1
2 .

Proof. Let u(t) be the any solution of problem (1.1) with E(0) = 0, T be the existence
time of u(t). The energy equality gives

1
2‖ut‖

2 + a(δ)‖∇u‖2 + 1
p+ 1Iδ(u) ≤ 1

2‖ut‖
2 +J(u) = E(0), 0 < δ <

p+ 1
2 . (2.15)

From (2.15) it implies that if E(0) < 0, then Iδ(u) < 0, J(u) < 0 < d(δ) since d(δ) > 0
by Lemma 2.3 for 0 < δ < p+1

2 ; if E(0) = 0, ‖∇u0‖ 6= 0, then by Theorem 2.6 we
have ‖∇u0‖ ≥ r0 for 0 ≤ t < T . Again by (2.15) we get Iδ(u) < 0, J(u) < 0 < d(δ)
for 0 < δ < p+1

2 . Thus for above two cases we always have u(t) ∈ Vδ for 0 < δ < p+1
2 ,

0 ≤ t < T .
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3. GLOBAL EXISTENCE AND FINITE TIME BLOWUP AT E(0) < d

Here, we shall prove the global existence and blow up property in finite time
of the solutions for problem (1.1) by using potential wells introduced above.
Theorem 3.1 (Global existence for E(0) < d). Let u0(x) ∈ H1

0 (Ω) and u1(x) ∈ L2(Ω).
Assume that 0 < E(0) < d and I(u0) > 0 or ‖∇u0‖ = 0, then problem (1.1) admits
a global weak solution u(t) ∈ L∞

(
0,∞;H1

0 (Ω)
)
with ut(t) ∈ L∞

(
0,∞;L2(Ω)

)
and

u(t) ∈W for 0 ≤ t <∞.
Proof. Construct approximate solutions um(x, t) of problem (1.1) as did in [19]. Then
by the same logics used in the proof of Theorem 3.2 in [19] we can get

1
2‖umt‖

2 + J(um) = Em(0) < d, 0 ≤ t <∞ (3.1)

and um(t) ∈W for sufficiently large m and 0 ≤ t <∞. From (3.1) and

J(um) = 1
2‖∇um‖

2 − 1
p+ 1

∫

Ω

|um|p+1 ln |um|dx+ 1
(p+ 1)2 ‖um‖

p+1
p+1

≥
(

1
2 −

1
p+ 1

)
‖∇um‖2 + 1

p+ 1I(um)

≥ p− 1
2(p+ 1)‖∇um‖

2

we can write
1
2‖umt‖

2 + p− 1
2(p+ 1)‖∇um‖

2 < d, 0 ≤ t <∞,

which implies that

‖∇um‖2 <
2(p+ 1)
p− 1 d, 0 ≤ t <∞, (3.2)

‖um‖2p+1 ≤ C2‖∇um‖2 < C2 2(p+ 1)
p− 1 d, 0 ≤ t <∞, (3.3)

∫

Ω

|um|p+1 ln |um|dx < ‖u‖p+2
p+2 ≤ Cp+2‖∇um‖p+2

< Cp+2
(

2(p+ 1)d
p− 1

) p+2
2

, 0 ≤ t <∞, (3.4)

and

‖umt‖2 < 2d, 0 ≤ t <∞. (3.5)

From (3.2)–(3.5) and compactness method it follows that problem (1.1) admits a global
weak solution u(t) ∈ L∞

(
0,∞;H1

0 (Ω)
)
with ut(t) ∈ L∞

(
0,∞;L2(Ω)

)
. Ultimately, by

Theorem 2.5, we have u(t) ∈W for 0 ≤ t <∞.
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Theorem 3.2 (Finite time blow up for E(0) < d). Let u0(x) ∈ H1
0 (Ω) and u1(x) ∈

L2(Ω). Assume that E(0) < d, I(u0) < 0 and (u0, u1) ≥ 0, then the weak solution of
problem (1.1) blows up in finite time such that

lim
t→T−

‖u(·, t)‖ = +∞.

Proof. Suppose u(x, t) be any solution of problem (1.1) with E(0) < d and I(u0) < 0.
Let us consider the function L(t) : [0,+∞)→ R+ defined by

L(t) := ‖u‖2. (3.6)

Differentiating this we have

L′(t) = 2(u, ut) (3.7)

and

L′′(t) = 2‖ut‖2 + 2(u, utt)

= 2‖ut‖2 − 2


‖∇u‖2 −

∫

Ω

|u|p+1 ln |u|dx


 (3.8)

= 2‖ut‖2 − 2I(u). (3.9)

From (2.2) we have

1
2‖ut‖

2 + 1
2‖∇u‖

2 − 1
p+ 1

∫

Ω

|u|p+1 ln |u|dx+ 1
(p+ 1)2 ‖u‖

p+1
p+1 ≤ E(0).

From this we can write

2
∫

Ω

|u|p+1 ln |u|dx ≥(p+ 1)‖ut‖2 + (p+ 1)‖∇u‖2 + 2
(p+ 1)‖u‖

p+1
p+1

− 2(p+ 1)E(0)
≥(p+ 1)‖ut‖2 + (p+ 1)‖∇u‖2 − 2(p+ 1)E(0).

(3.10)

From (3.8) and (3.10) we obtain

L′′(t) ≥ 2‖ut‖2 − 2‖∇u‖2 + (p+ 1)‖ut‖2 + (p+ 1)‖∇u‖2 − 2(p+ 1)E(0)
= (p+ 3)‖ut‖2 + (p− 1)‖∇u‖2 − 2(p+ 1)E(0)
≥ (p+ 3)‖ut‖2 + (p− 1)λ1L(t)− 2(p+ 1)E(0),

(3.11)

where λ1 > 0 is the first eigenvalue of the problem ∆ϕ+ λϕ = 0, φ|∂Ω = 0.
(i) If E(0) ≤ 0, then (3.11) implies

L′′(t) ≥ (p+ 3)‖ut‖2. (3.12)
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(ii) If 0 < E(0) < d, then from Theorem 2.5 it follows that u(t) ∈ Vδ for 1 < δ < δ2
and t > 0, where δ2 is the same as that in Theorem 2.5. Thus Iδ(u) < 0 and by
Lemma 2.2(ii) ‖∇u‖ > r(δ) for 1 < δ < δ2 and t > 0. Therefore, we get Iδ2(u) ≤ 0
and ‖∇u‖ ≥ r(δ2) for t > 0. Again, as L′(0) = 2(u0, u1) ≥ 0, by (3.9) we obtain

L′′(t) ≥ 2(δ2 − 1)‖∇u‖2 − 2Iδ2(u) ≥ 2(δ2 − 1)r2(δ2) > 0,

L′(t) ≥ 2(δ2 − 1)r2(δ2)t+ L′(0) ≥ 2(δ2 − 1)r2(δ2)t,

and

L(t) ≥ (δ2 − 1)r2(δ2)t2 + L(0) ≥ (δ2 − 1)r2(δ2)t2.

Thus, for sufficiently large t we have (p − 1)λ1L(t) > 2(p + 1)E(0). Using this into
(3.11) we can achieve (3.12). Ultimately (3.12) gives

L(t)L′′(t)− p+ 3
4 (L′(t))2 ≥ (p+ 3)

(
‖u‖2‖ut‖ − (u, ut)2) ≥ 0

and

(L−α(t))′′ = − α

Lα+2(t)

(
L(t)L′′(t)− (α+ 1) (L′(t))2

)
≤ 0, α = p− 1

4 .

Thus, the conclusion of this theorem follows for some T > 0.

4. GLOBAL EXISTENCE AND FINITE TIME BLOWUP AT E(0) = d

In this section, we shall prove the global existence and blow up property in finite
time of the solutions for problem (1.1) at critical energy level by using potential well
method.
Theorem 4.1 (Global existence for E(0) = d). Let u0(x) ∈ H1

0 (Ω) and u1(x) ∈ L2(Ω).
Assume that E(0) = d and I(u0) ≥ 0, then problem (1.1) admits a global weak solution
u(t) ∈ L∞

(
0,∞;H1

0 (Ω)
)
with ut(t) ∈ L∞

(
0,∞;L2(Ω)

)
and u(t) ∈ W ∪ ∂W for

0 ≤ t <∞.
Proof. We prove this theorem considering two cases (i) and (ii).

(i) ‖∇u0‖ 6= 0.
Let λm = 1− 1

m and u0m = λmu0, m = 2, 3, . . .. Consider the initial conditions

u(x, 0) = u0m(x), ut(x, 0) = u1(x)

and the corresponding problem




utt −4u = |u|p ln |u|, x ∈ Ω, t > 0,
u(x, 0) = u0m(x), ut(x, 0) = u1(x), x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω, t > 0.

(4.1)
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From I(u0) ≥ 0 and Lemma 2.1, we have λ∗ = λ∗(u0) ≥ 1. Hence I(u0m) > 0 and
J(u0m) = J(λmu0) < J(u0). In addition

0 < Em(0) ≡ 1
2‖u1‖2 + J(u0m) < 1

2‖u1‖2 + J(u0) = E(0) = d.

Thus it follows from Theorem 3.1 that for each m, problem (4.1) admits a global
solution um(t) ∈ L∞

(
0,∞;H1

0 (Ω)
)
and um(t) ∈W for 0 ≤ t <∞ satisfying

(umt, v) +
t∫

0

(∇um,∇v)dτ =
t∫

0

(f(um), v)dτ + (u1, v) (4.2)

for every v ∈ H1
0 (Ω), 0 ≤ t <∞ and

1
2‖umt‖

2 + J(um) = Em(0) < d, 0 ≤ t <∞. (4.3)

The rest of the proof is similar to Theorem 3.1
(ii) ‖∇u0‖ = 0.

Note that ‖∇u0‖ = 0 implies that J(u0) = 0 and 1
2‖u1‖2 = E(0) = d. Let λm = 1− 1

m
and u1m(x) = λmu1, m = 2, 3, . . .. Consider the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1m(x)

and the corresponding problem




utt −4u = |u|p ln |u|, x ∈ Ω, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1m(x), x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω, t > 0.

(4.4)

From

‖∇u0‖ = 0, 0 < Em(0) = 1
2‖u1m‖2 + J(u0) = 1

2‖λmu1‖2 < E(0) = d

and Theorem 3.1 it follows that for each m, problem (4.4) admits a global solution
um(t) ∈ L∞

(
0,∞;H1

0 (Ω)
)
with ut(t) ∈ L∞

(
0,∞;L2(Ω)

)
and um(t) ∈ W for 0 ≤

t < ∞, satisfying (4.2) and (4.3). The remainder proof is similar as part (i) of this
theorem.

To prove blow up of solution under critical energy condition, we need following
lemma. For the proof of Lemma 4.2, we refer the readers to see Lemma 2.7 in [29].

Lemma 4.2 (Invariant set V ′). Let u0(x) ∈ H1
0 (Ω) and u1(x) ∈ L2(Ω). Assume that

E(0) = d, I(u0) < 0 and (u0, u1) ≥ 0, then the set V ′ is invariant under the flow
of (1.1).
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Theorem 4.3 (Finite time blow up for E(0) = d). Let u0(x) ∈ H1
0 (Ω) and u1(x) ∈

L2(Ω). Assume that E(0) = d, I(u0) < 0 and (u0, u1) ≥ 0, then the weak solution of
problem (1.1) blows up in finite time such that

lim
t→T−

‖u(·, t)‖ = +∞.

Proof. From (3.11) we have

L′′(t) ≥ (p+ 3)‖ut‖2 + (p− 1)λ1L(t)− 2(p+ 1)E(0)
= (p+ 3)‖ut‖2 + (p− 1)λ1L(t)− 2(p+ 1)d. (4.5)

Eq. (3.9) and Lemma 4.2 yield L′′(t) > 0 for 0 ≤ t <∞ which means L′(t) is strictly
increasing for 0 ≤ t <∞. Since L′(0) = 2(u0, u1) ≥ 0, for any t0 > 0 we have

L′(t) ≥ L′(t0) > 0, t ≥ t0

and
L(t) ≥ L′(t0)(t− t0) + L(t0) > L′(t0)(t− t0), t ≥ t0.

So for sufficiently large t, we can obtain

(p− 1)λ1L(t) > 2(p+ 1)d.

From this and (4.5) we get
L′′(t) ≥ (p+ 3)‖ut‖2.

Hence,

L(t)L′′(t)− p+ 3
4 (L′(t))2 ≥ (p+ 3)

(
‖u‖2‖ut‖ − (u, ut)2) ≥ 0.

The rest of the proof is similar to Theorem 3.2.

5. FINITE TIME BLOWUP AT E(0) > 0

In this section we shall prove the blowup result at high initial energy.

Theorem 5.1 (Finite time blow up for E(0) > 0). If the initial data (u0, u1) ∈
H1

0 (Ω)× L2(Ω) satisfy

(i) E(0) > 0,
(ii) (u0, u1) > 0,
(iii) ‖u0‖2 > 2(p+1)

λ1(p−1)E(0),
(iv) I(u0) < 0,

then the solutions of problem (1.1) blow up in finite time.
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Proof. We shall prove the result by following two steps:
Step 1. In this step, we prove that I(u) < 0 and ‖u(t)‖2 > 2(p+1)

λ1(p−1)E(0) for every
t ∈ (0, T ). For I(u) < 0, arguing by contradiction we suppose that there exists a first
time t0 ∈ (0, T ) such that I(u(t0)) = 0 and I(u) < 0 for t ∈ [0, t0). Again, we consider
the function L(t) as before and its first and second derivative are as below

L′(t) = 2(u, ut)

and

L′′(t) = 2‖ut‖ − 2I(u).

Since I(u) < 0 for t ∈ [0, t0), we have L′′(t) > 0 for any t ∈ (0, t0), which means
that L′(t) is increasing. Due to L′(0) = 2(u0, u1) > 0, we obtain L′(t) > 0 for every
t ∈ (0, t0), which implies that L(t) is strictly increasing. Thus, we reach

L(t) > ‖u0‖2 >
2(p+ 1)
λ1(p− 1)E(0) for any t ∈ (0, t0).

Consequently, we have

L(t0) > 2(p+ 1)
λ1(p− 1)E(0). (5.1)

In the meantime, we know

J(u((t0)) ≤ E(t0) ≤ E(0)

that is
1
2‖∇u(t0)‖2 − 1

p+ 1

∫

Ω

|u(t0)|p+1 ln |u(t0)|dx+ 1
(p+ 1)2 ‖u(t0)‖p+1

p+1

≤E(t0) ≤ E(0). (5.2)

In addition, I(u(t0)) = 0 implies

‖∇u(t0)‖2 =
∫

Ω

|u(t0)|p+1 ln |u(t0)|dx.

Now, we can write (5.2) as follows
1
2‖∇u(t0)‖2 − 1

p+ 1

∫

Ω

|u(t0)|p+1 ln |u(t0)|dx+ 1
(p+ 1)2 ‖u(t0)‖p+1

p+1

=1
2‖∇u(t0)‖2 − 1

p+ 1‖∇u(t0)‖2 + 1
(p+ 1)2 ‖u(t0)‖p+1

p+1

≥ p− 1
2(p+ 1)‖∇u(t0)‖2

≥λ1(p− 1)
2(p+ 1) ‖u(t0)‖2. (5.3)
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From (5.2) and (5.3), we get

λ1(p− 1)
2(p+ 1) ‖u(t0)‖2 ≤ E(0)

that is

L(t0) ≤ 2(p+ 1)
λ1(p− 1)E(0),

which contradicts (5.1). Thus, we have

I(u) < 0 for every t ∈ (0, T )

and

L(t) > 2(p+ 1)
λ1(p− 1)E(0) for every t ∈ (0, T ). (5.4)

Step 2. Here, we prove the blowup result. From (3.11) and (5.4) we have

L′′(t) ≥ (p+ 3)‖ut‖2.

Hence, we obtain

L(t)L′′(t)− p+ 3
4 (L′(t))2 ≥ (p+ 3)

(
‖u‖2‖ut‖ − (u, ut)2) ≥ 0.

The remainder proof is similar to Theorem 3.2.
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