Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The research aimed to determine the impact of the degree of surface porosity of elements made using Direct Metal Laser Sintering (DMLS) 3D printing technology on the mechanical properties and structure of the elements by comparing the obtained test results with the standards and properties of elements manufactured using conventional methods. Design/methodology/approach 17-4 PH stainless steel was used to prepare the samples, from which two types of samples were printed. The elements were printed vertically and at an angle of 45° to the printer's working space. The assessment of material properties in a static tensile test was used to determine the state of stress and local strains using Digital Image Correlation. Additionally, hardness and surface roughness were measured. The structure of printed elements was also assessed using a light microscope, a scanning electron microscope and computer tomography with numerical porosity analysis. Findings The research showed a significant impact of porosity in concentrating and transferring stresses into the structure of the material, thus weakening the mechanical properties of the manufactured elements. Research limitations/implications The mechanisms of pore formation during 3D printing require in-depth analysis in various printer settings. Practical implications The mechanisms of pore formation in 3D printed metal materials affect the strength properties and, therefore, affect the applicability of the manufactured elements. Understanding the mechanisms will allow us to make corrections to technological processes. Originality/value The originality of the study lies in the link between the plastic behaviour of the material and the anisotropy of mechanical properties with the anisotropy of pore formation in elements 3D printed using DMLS technology.
Wydawca
Rocznik
Tom
Strony
289--305
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-665 Warszawa, Poland
autor
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-665 Warszawa, Poland
autor
- Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-665 Warszawa, Poland
autor
- Faculty of Mechatronics, Warsaw University of Technology, Pl. Politechniki 1, 00-665 Warszawa, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-665 Warszawa, Poland
autor
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-665 Warszawa, Poland
Bibliografia
- [1] P. Ninpetcha, P. Kowitwarangkul, S. Mahathanabodee, P. Chalermkarnnon, P. Ratanadecho, A review of computer simulations of metal 3D printing, AIP Conference Proceedings 2279 (2020) 050002. DOI: https://doi.org/10.1063/5.0022974
- [2] V. Bhavar, P. Kattire, V. Patil, S. Khot, K. Gujar, R. Singh, A Review on Powder Bed Fusion Technology of Metal Additive Manufacturing, Proceedings of the International Conference and Exhibition on Additive Manufacturing Technologies “AM-2014”, Banglore, India, 2014.
- [3] M. Markl, C. Korner, Multi-Scale Modeling of Powder-Bed-Based Additive Manufacturing; Annual Review of Materials Research 46 (2016) 93-123. DOI: https://doi.org/10.1146/annurev-matsci-070115-032158
- [4] M. Meng, J. Wang, H. Huang, X. Liu, J. Zhang, Z. Li, 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects; Journal of Orthopaedic Translation 42/1 (2023) 94-112. DOI: https://doi.org/10.1016/j.jot.2023.08.004
- [5] P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, E.A. Jägle, Steels in additive manufacturing: A review of their microstructure and properties, Materials Science and Engineering: A 772 (2020) 138633. DOI: https://doi.org/10.1016/j.msea.2019.138633
- [6] P. Humnabad, R. Tarun, I. Das, An Overview of Direct Metal Laser Sintering (DMLS) Technology for metal 3D Printing, Journal of Mines Metals and Fuels 70/3A (2022) 127-133. DOI: https://doi.org/10.18311/jmmf/2022/30681
- [7] M. Anand, A.K. Das, Issues in fabrication of 3D components through DMLS Technique: A review, Optics and Laser Technology 139 (2021) 106914. DOI: https://doi.org/10.1016/j.optlastec.2021.106914
- [8] S. Yamashita, R. Yamauchi, K. Saida, Influence Mechanism of Solidification Mode on Solidification Cracking Susceptibility of Stainless Steels; Japan Welding Society 40/2 (2022) 67-76 (in Japanese). DOI: https://doi.org/10.2207/qjjws.40.67
- [9] H.-H. Lai, H. Hsieh, C.-Y. Kuo, W. Wu, Solidification cracking nature and sequence of different stainless steels, Journal of Materials Research and Technology 25 (2023) 1030-1040. DOI: https://doi.org/10.1016/j.jmrt.2023.06.017
- [10] C.-C. Kuo, X.-Y. Yang; Optimization of direct metal printing process parameters for plastic injection mold with both gas permeability and mechanical properties using design of experiments approach; The International Journal of Advanced Manufacturing Technology 109 (2020) 1219-1235. DOI: https://doi.org/10.1007/s00170-020-05724-w
- [11] P. Hanzl, M. Zetek, T. Baksa, T. Kroupa, The Influence of Processing Parameters on the Mechanical Properties of SLM Parts, Procedia Engineering 100 (2015) 1405-1413. DOI: https://doi.org/10.1016/j.proeng.2015.01.510
- [12] A.A. Deev, P.A. Kuznetcov, S.N. Petrov, Anisotropy of mechanical properties and its correlation with the structure of the stainless steel 316L produced by the SLM method, Physics Procedia 83 (2016) 789-796. DOI: https://doi.org/10.1016/j.phpro.2016.08.081
- [13] V.S. Sufiiarov, A.A. Popovich, E.V. Borisov, I.A. Polozov, D.V. Masaylo, A.V. Orlov, The effect of layer thickness at selective laser melting, Procedia Engineering 174 (2017) 126-134. DOI: https://doi.org/10.1016/j.proeng.2017.01.179
- [14] A.M. Khorasani, I. Gibson, U.S. Awan, A. Ghaderi, The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4V, Additive Manufacturing 25 (2019) 176-186. DOI: https://doi.org/10.1016/j.addma.2018.09.002
- [15] R. Baitimerov, P. Lykov, D. Zherebtsov, L. Radionova, A. Shultc, K.G. Prashanth, Influence of Powder Characteristics on Processability of AlSi12 Alloy Fabricated by Selective Laser Melting, Materials 11/5 (2018) 742. DOI: https://doi.org/10.3390/ma11050742
- [16] S.A. Fatemi, J. Z. Ashany, A.J. Aghchai, A. Abolghasemi, Experimental investigation of process parameters on layer thickness and density in direct metal laser sintering: a response surface methodology approach, Virtual and Physical Prototyping 12/2 (2017) 133-140. DOI: https://doi.org/10.1080/17452759.2017.1293274
- [17] J. Delgado, J. Ciurana, C.A. Rodriguez, Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials, The International Journal of Advanced Manufacturing Technology 60 (2012) 601-610. DOI: https://doi.org/10.1007/s00170-011-3643-5
- [18] M. Król, J. Mazurkiewicz, S. Żołnierczyk, Optimization and analysis of porosity and roughness in selective laser melting 316L parts, Archives of Materials Science and Engineering 90/1 (2018) 5-15. DOI: https://doi.org/10.5604/01.3001.0012.0607
- [19] P.K. Nayak, A.K. Sahu, S.S. Mahapatra, Effect of Process Parameters on the Mechanical Behavior of FDM and DMLS Build Parts, Materials Today: Proceedings 22/4 (2020) 1443-1451. DOI: https://doi.org/10.1016/j.matpr.2020.01.502
- [20] G. Mrówka-Nowotnik, The effect of intermetallics on the fracture mechanism in AlSi1MgMn alloy, Journal of Achievements in Materials and Manufacturing Engineering 30/1 (2008) 35-42.
- [21] W. Zhang, L. Li, J. Gao, J. Huang, X. Zhang, The Effect of Porosity on Mechanical Properties of Porous FeCrN Stainless Steel, Journal of Physics: Conference Series 2044 (2021) 012002. DOI: https://doi.org/10.1088/1742-6596/2044/1/012002
- [22] S. Kedziora, T. Decker, E. Museyibov, J. Morbach, S. Hohmann, A. Huwer, M. Wahl, Strength Properties of 316L and 17-4 PH Stainless Steel Produced with Additive Manufacturing, National Library of Medicine Materials 15/18 (2022) 6278. DOI: https://doi.org/10.3390/ma15186278
- [23] R. Reiff-Musgrove, W. Gu, J. E. Campbell, J. Reidy, A. Bose, A. Chitrapur, Y. Tang, M. Burley, T. Clyne, Effect of Relatively Low Levels of Porosity on the Plasticity of Metals and Implications for Profilometry-Based Indentation Plastometry, Advanced Engineering Materials 24/12 (2022) 202200642. DOI: https://doi.org/10.1002/adem.202200642
- [24] R. Saraczyn, M. Deroszewska, T. Kowaluk, E. Skołek, W. Rządkowski, D. Myszka, Supported by 2D and 3D Imaging Methods Investigation of the Influence of Fiber Orientation on the Mechanical Properties of the Composites Reinforced with Fibers in a Polymer Matrix, Advances in Science and Technology Research Journal 17/3 (2023) 170-183. DOI: https://doi.org/10.12913/22998624/166101
- [25] T. Alkindi, M. Alyammahi, R. A, Susantyoko, S. Atatreh, The effect of varying specimens printing angles to the bed surface on the tensile strength of 3D-printed 17-4PH stainless-steels via metal FFF additive manufacturing, MRS Communications 11 (2021) 310-316. DOI: https://doi.org/10.1557/s43579-021-00040-0
- [26] M.M. Hanon, Y. Alshammas, L. Zsidai, Effect of print orientation and bronze existence on tribological and mechanical properties of 3D-printed bronze/PLA composite, May 2020, The International Journal of Advanced Manufacturing Technology 108 (2020) 553-570. DOI: https://doi.org/10.1007/s00170-020-05391-x
- [27] A.D. Baghi, S. Nafisi, R. Hashemi, H. Ebendorff-Heidepriem, R. Ghomashchi, Experimental realisation of build orientation effects on the mechanical properties of truly as-built Ti-6Al-4V SLM parts, Journal of Manufacturing Processes 64 (2021) 140-152. DOI: https://doi.org/10.1016/j.jmapro.2021.01.027
- [28] M.G. Moletsane, P. Krakhmalev, N. Kazantseva, A. du Plessis, I. Yadroitsava, I. Yadroitsev, Tensile properties and microstructure of direct metal laser-sintered Ti6Al4V (ELI) alloy, South African Journal of Industrial Engineering 27/3 (2016) 110-121. DOI: https://doi.org/10.7166/27-3-1667
- [29] B. Demchyna, M. Surmai, R. Tkach, The experimental study of glass multilayer columns using digital image correlation, Archives of Materials Science and Engineering 96/1 (2019) 32-41. DOI: https://doi.org/10.5604/01.3001.0013.1990
- [30] G. Kokot, K. Skalski, A. Makuch, W. Ogierman, Digital image correlation and nanoindentation in evaluation of material parameters of cancellous bone microstructure, Archives of Materials Science and Engineering 83/1 (2017) 10-16. DOI: https://doi.org/10.5604/01.3001.0009.7536
- [31] H. Dinnebier, I. Ehrlich, The effects of severe temperature changes and high humidity on porous CFRP, Journal of Achievements in Materials and Manufacturing Engineering 67/1 (2014) 14-20.
- [32] P. Malara, L.B. Dobrzański, Computer-aided design and manufacturing of dental surgical guides based on cone beam computed tomography, Archives of Materials Science and Engineering 76/2 (2015) 140-149.
- [33] S. Wang, J. Ning, L. Zhu, Z. Yang, W. Yan, Y. Dun, P. Xue, P. Xu, S. Bose, A. Bandyopadhyay, Role of porosity defects in metal 3D printing: Formation mechanisms, impacts on properties and mitigation strategies, Materials Today 59 (2022) 133-160. DOI: https://doi.org/10.1016/j.mattod.2022.08.014
- [34] Z. Wang, Ch. Wang, Ch. Li, Y. Qin, L. Zhong, B. Chen, Z. Li, H. Liu, F. Chang, J. Wang, Analysis of factors influencing bone ingrowth into three-dimensional printed porous metal scaffolds: A review, Journal of Alloys and Compounds 717 (2017) 271-285. DOI: https://doi.org/10.1016/j.jallcom.2017.05.079
- [35] S.V. Adjamskyi, G.A. Kononenko, R.V. Podolskyi, Influence of technological parameters of slm-process on porosity of metal products, The Paton Welding Journal #10 (2020) 13-18. DOI: https://doi.org/10.37434/tpwj2020.10.03
- [36] A. Kroma, M. Mendak, M. Jakubowicz, B. Gapiński, P. Popielarski, Non-Contact Multiscale Analysis of a DPP 3D-Printed Injection Die for Investment Casting, Materials 14/22 (2021) 6758. DOI: https://doi.org/10.3390/ma14226758
- [37] A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, L. Bian, Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel, International Journal of Fatigue 94/2 (2017) 218-235. DOI: https://doi.org/10.1016/j.ijfatigue.2016.03.014
- [38] S. Beretta, M. Gargourimotlagh, S. Foletti, A. du Plessis, M. Riccio, Fatigue strength assessment of “as built” AlSi10Mg manufactured by SLM with different build orientations, International Journal of Fatigue 139(2020) 105737. DOI: https://doi.org/10.1016/j.ijfatigue.2020.105737
- [39] I.S. Raju, J.C. Jr. Newman, Stress-intensity factors for a wide range of semi-elliptical Surface cracks in finite-thickness plates, Engineering Fracture Mechanics 11/4 (1979) 817-829. DOI: https://doi.org/10.1016/0013-7944(79)90139-5
- [40] X. Wu, In situ formation by laser cladding of a TiC composite coating with a gradient distribution, Surface and Coatings Technology 122/2-3 (2006) 111-115. DOI: https://doi.org/10.1016/S0257-8972(99)00045-6
- [41] A. Stanula, W. Pilarczyk, Combined carbon content assessment method for powder metallurgy, Journal of Achievements in Materials and Manufacturing Engineering 114/1 (2022) 15-21. DOI: https://doi.org/10.5604/01.3001.0016.1479
- [42] A. Majeed, A. Ahmed, A. Salam, M. Z. Sheikh, Surface quality improvement by parameters analysis, optimization and heat treatment of AlSi10Mg parts manufactured by SLM additive manufacturing, International Journal of Lightweight Materials and Manufacture 2/4 (2019) 288-295. DOI: https://doi.org/10.1016/j.ijlmm.2019.08.001
- [43] M.-H. Hong, B.K. Min, T.-Y. Kwon, The Influence of Process Parameters on the Surface Roughness of a 3D-Printed Co–Cr Dental Alloy Produced via Selective Laser Melting, Applied Sciences 6/12 (2016) 401. DOI: https://doi.org/10.3390/app6120401
- [44] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, L.B. Dobrzański, Comparative analysis of mechanical properties of scaffolds sintered from Ti and Ti6Al4V powders, Archives of Materials Science and Engineering 73/2 (2015) 69-81.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b3f9e78-f7b9-4c7f-a009-f9be8375ad7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.