Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The heat transfer coefficient during the pool boiling on the outside of a horizontal tube can be predicted by correlations. Our choice was based on ten correlations known from the literature. The experimental data were recovered from the recent work, for different fluids used. An evaluation was made of agreement between each of the correlations and the experimental data. The results of the present study firstly showed a good reliability for the correlations of untsov [10], Stephan and Abdeslam [11] with deviations of 20% and 27%, respectively. Also, the results revealed acceptable agreements for the correlations of Kruzhlin [6], Mc Nelly [7] and Touhami [15] with deviations of 26%, 29% and 29% respectively. The remaining correlations showed very high deviations from the experimental data. Finally, improvements have been made in the correlations of Shekriladze [12] and Mostinski [9], and a new correlation was proposed giving convincing results.
Wydawca
Czasopismo
Rocznik
Tom
Strony
481--495
Opis fizyczny
Bibliogr. 35 poz., tab., rys.
Twórcy
autor
- Mechanical Faculty, Gaseous Fuels and Environment Laboratory, USTO-MB, El-M’Naouer, Oran, Algeria
autor
- Department of Technical Sciences, Amar Telidji of Laghouat, Algeria
Bibliografia
- [1] I.L. Pioro, W. Rohsenow, and S.S. Doerffer. Nucleate pool-boiling heat transfer. II: Assessment of prediction methods. International Journal of Heat and Mass Transfer, 47(23):5045–5057, 2004. doi: 10.1016/j.ijheatmasstransfer.2004.06.020.
- [2] A. Sathyabhama and R.N. Hegde. Prediction of nucleate pool boiling heat transfer coefficient. Thermal Science, 14(2):353–364, 2010. doi: 10.2298/TSCI1002353S.
- [3] T. Baki, A. Aris, and M. Tebbal. Investigations on pool boiling of refrigerant R141b outside a horizontal tube, Archive of Mechanical Engineering. 68(1):77–92, 2021. doi: 10.24425/ame.2021.137042.
- [4] T. Baki. Survey on the nucleate pool boiling of hydrogen and its limits. Journal of Mechanical and Energy Engineering, 4(2):157–166, 2020. doi: 10.30464/jmee.2020.4.2.157.
- [5] T. Baki. Pool boiling of ammonia, assessment of correlations. International Journal of Air- Conditioning and Refrigeration, 29(02):2150012, 2021. doi: 10.1142/S2010132521500127.
- [6] G.N. Kruzhilin. Free-convection transfer of heat from a horizontal plate and boiling liquid. Doklady AN SSSR (Reports of the USSR Academy of Sciences), 58(8):1657–1660, 1947.
- [7] M.J. Mc Nelly. A correlation of rates of heat transfer to nucleate boiling of liquids. Journal of Imperial College Chemical Engineering Socoiety, 7:187–34, 1953.
- [8] H.K. Forster, and N. Zuber. Dynamics of vapor bubbles and boiling heat transfer. AIChE Journal, 1(4):531–535, 1955. doi: 10.1002/aic.690010425.
- [9] I.L. Mostinski. Application of the rule of corresponding states for calculation of heat transfer and critical heat flux. Teploenergetika, 4(4):66–71, 1963.
- [10] D.A. Labuntsov. Heat transfer problems with nucleate boiling of liquids. Thermal Engineering, 19(9):21–28, 1972.
- [11] K. Stephan, and M. Abdelsalam. Heat-transfer correlations for natural convection boiling. International Journal of Heat and Mass Transfer, 23(1):73–87, 1980. doi: 10.1016/0017-9310(80)90140-4.
- [12] I.G. Shekriladze. Boiling heat transfer: mechanisms, models, correlations and the lines of further research. The Open Mechanical Engineering Journal, 2:104–127, 2008. doi: 10.2174/1874155X00802010104.
- [13] V.V. Yagov. Nucleate boiling heat transfer: Possibilities and limitations of theoretical analysis. Heat and Mass Transfer, 45(7):881–892, 2009. doi: 10.1007/s00231-007-0253-8.
- [14] S. Fazel and S. Roumana. Pool boiling heat transfer to pure liquids. In WSEAS Conf. 2010.
- [15] T. Baki, A. Aris, and M. Tebbal. Proposal for a correlation raising the impact of the external diameter of a horizontal tube during pool boiling. International Journal of Thermal Sciences, 84:293–299, 2014. doi: 10.1016/j.ijthermalsci.2014.05.023.
- [16] M.G. Kang. Effect of surface roughness on pool boiling heat transfer. International Journal of Heat and Mass Transfer, 43(22):4073–4085, 2000. doi: 10.1016/S0017-9310(00)00043-0.
- [17] M.G. Kang. Local pool boiling coefficients on a horizontal tubes. Journal of Mechanical Science and Technology, 19(3):860–869, 2005. doi: 10.1007/BF02916134.
- [18] J.S. Mehta and S.G. Kandlikar. Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure, Part II: Experimental results and bubble dynamics for circumferential V-groove and axial rectangular open microchannels. International Journal of Heat and Mass Transfer, 64:1216–1225, 2013. doi: 10.1016/j.ijheatmasstransfer.2013.04.004.
- [19] S.K. Das, N. Putra, and W. Roetzel. Pool boiling of nano-fluids on horizontal narrow tubes. International Journal of Multiphase Flow, 29(8):1237–1247, 2003. doi: 10.1016/S0301-9322 (03)00105-8.
- [20] G. Prakash Narayan, K.B. Anoop, G. Sateesh, and S.K. Das. Effect of surface orientation on pool boiling heat transfer of nanoparticle suspensions. International Journal of Multiphase Flow, 34(2):145–160, 2008. doi: 10.1016/j.ijmultiphaseflow.2007.08.004.
- [21] D. Gorenflo, F. Gremer, E. Danger, and A. Luke. Pool boiling heat transfer to binary mix- tures with miscibility gap: Experimental results for a horizontal copper tube with 4.35 mm O.D. Experimetal Thermal Fluides Sciences, 25(5):243–254, 2001. doi: 10.1016/S0894-1777(01)00072-3.
- [22] Z.H. Liu and Y.H. Qiu. Enhanced boiling heat transfer in restricted spaces of a compact tube bundle with enhanced tubes. Applied Thermal Engineering, 22(17):1931–1941, 2002. doi: 10.1016/S1359-4311(02)00111-4.
- [23] Y.H. Qiu and Z.H. Liu. Boiling heat transfer of water on smooth tubes in a compact staggered tube bundle. Applied Thermal Engineering, 24(10):1431–1441, 2004. doi: 10.1016/j.applther maleng.2003.11.021.
- [24] K.G. Rajulu, R. Kumar, B. Mohanty, and H. K. Varma. Enhancement of nucleate pool boiling heat transfer coefficient by reentrant cavity surfaces. Heat and Mass Transfer, 41(2):127–132, 2004. doi: 10.1007/s00231-004-0526-4.
- [25] A. Fazel, A. Safekordi, and M. Jamialahmadi. Pool boiling heat transfer in water/amines solu- tions. International Journal of Engineering, 21(2):113–130, 2008.
- [26] S.M. Peyghambarzadeh, M. Jamialahmadi, S.A. Alavi Fazel, and S. Azizi. Experimental and theoretical study of pool boiling heat transfer to amine solutions. Brazilian Journal of Chemical Engineering, 26:26–33, 2009. doi: 10.1590/S0104-66322009000100004.
- [27] S. Bhaumik, V.K. Agarwal, and S.C. Gupta. A generalized correlation of nucleate pool boiling of liquids. Indian Journal of Chemical Technology, 2004.
- [28] W.C. Elrod, J.A. Clark, E.R. Lady, and H. Merte. Boiling heat transfer data at low heat flux. Journal of Heat Transfer, 87(C):235–243, 1967.
- [29] Y. Chen, M. Groll, R. Mertz, and R. Kulenovic. Pool boiling heat transfer of propane, isobutane and their mixtures on enhanced tubes with reentrant channels. International Journal of Heat and Mass Transfer, 48(11):2310–2322, 2005. doi: 10.1016/j.ijheatmasstransfer.2004.10.037.
- [30] D. Jung, H. Lee, D. Bae, and S. Oho. Nucleate boiling heat transfer coefficients of flammable re- frigerants, International Journal of Refrigeration, 27(4):409–414, 2004. doi: 10.1016/j.ijrefrig. 2003.11.007.
- [31] J.X. Zheng, G.P. Jin, M.C. Chyu, and Z.H. Ayub. Boiling of ammonia/lubricant mixture on a horizontal tube in a flooded evaporator with inlet vapor quality. Experimental Thermal Fluides Sciences, 30(3):223–231, 2006. doi: 10.1016/j.expthermflusci.2005.06.001.
- [32] V. Trisaksri, and S. Wongwises. Nucleate pool boiling heat transfer of TiO2-R141b nanofluids. International Journal of Heat and Mass Transfer, 52(5-6):1582–1588, 2009. doi: 10.1016/ j.ijheatmasstransfer.2008.07.041.
- [33] J.M.S. Jabardo, G. Ribatski, and E. Stelute. Roughness and surface material effects on nucleate boiling heat transfer from cylindrical surfaces to refrigerants R-134a and R-123. Experimetal Thermal Fluides Sciences, 33(4):579–590, 2009. doi: 10.1016/j.expthermflusci.2008.12.004.
- [34] D. Jung, K. An, and J. Park. Nucleate boiling heat transfer coefficients of HCFC22, HFC134a, HFC125 and HFC32 on various enhanced tubes. International Journal of Refrigeration, 27(2):202–206, 2004. doi: 10.1016/S0140-7007(03)00124-5.
- [35] S.P. Rocha, O. Kannengieser, E.M. Cardoso, and J.C. Passos. Nucleate pool boiling of R-134a on plain and micro-finned tubes. International Journal of Refrigeration, 36(2):456–464, 2013. doi: 10.1016/j.ijrefrig.2012.11.031.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b3db3ab-55be-4a04-8501-0104a94cd103