Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we use the alternating direction method for isogeometric finite elements to simulate transient problems. Namely, we focus on a parabolic problem and use B-spline basis functions in space and an implicit time-marching method to fully discretize the problem. We introduce intermediate time-steps and separate our differential operator into a summation of the blocks that act along a particular coordinate axis in the intermediate time-steps. We show that the resulting stiffness matrix can be represented as a multiplication of two (in 2D) or three (in 3D) multi-diagonal matrices, each one with B-spline basis functions along the particular axis of the spatial system of coordinates. As a result of these algebraic transformations, we get a system of linear equations that can be factorized in a linear O(N) computational cost at every time-step of the implicit method. We use our method to simulate the heat transfer problem. We demonstrate theoretically and verify numerically that our implicit method is unconditionally stable for heat transfer problems (i.e., parabolic). We conclude our presentation with a discussion on the limitations of the method.
Wydawca
Czasopismo
Rocznik
Tom
Strony
335–352
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Department of Computer Sciences, Krakow, Poland
autor
- AGH University of Science and Technology, Department of Computer Sciences, Krakow, Poland
autor
- AGH University of Science and Technology, Department of Computer Sciences, Krakow, Poland
autor
- Curtin University, Perth, Western Australia
Bibliografia
- [1] Bazilevs Y., Beirao da Veiga L., Cottrell J.A., Hughes T.J.R., Sangalli G.: Isogeometric analysis: Approximation, stability and error estimates for hrefined meshes, Mathematical Methods and Models in Applied Sciences, vol. 16, pp. 1031–1090, 2011.
- [2] Bazilevs Y., Calo V.M., Cottrell J.A., Hughes T.J.R., Reali A., Scovazzi G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol. 197, pp. 173–201, 2007.
- [3] Bazilevs Y., Calo V.M., Zhang Y., Hughes T.J.R.: Isogeometric Fluid-Structure Interaction Analysis with Applications to Arterial Blood Flow, Computational Mechanics, vol. 38, pp. 310–322, 2006.
- [4] Birkhoff G., Varga R.S., Young D.: Alternating Direction Implicit Methods, Advances in Computers, vol. 3, pp. 189–273, 1962.
- [5] Calo V.M., Brasher N., Bazilevs Y., Hughes T.J.R.: Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow, Computational Mechanics, vol. 43(1), pp. 161–177, 2008.
- [6] Chang K., Hughes T.J.R., Calo V.M.: Isogeometric variational multiscale large- eddy simulation of fully-developed turbulent flow over a wavy wall, Computers & Fluids, vol. 68, pp. 94–104, 2012.
- [7] Collier N., Pardo D., Dalcin L., Paszyński M., Calo V.M.: The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers, Computer Methods in Applied Mechanics and Engineering, vol. 213–216, pp. 353–361, 2012.
- [8] Cottrell J.A., Hughes T.J.R., Bazilevs Y.: Isogeometric Analysis: Toward Integration of CAD and FEA, John Wiley and Sons, 2009.
- [9] Dede L., Borden M.J., Hughes T.J.R.: Isogeometric Analysis for Topology Optimization with a Phase Field Model, ICES REPORT 11–29, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, 2011.
- [10] Dede L., Hughes T.J.R., Lipton S., Calo V.M.: Structural Topology Optimization With Isogeometric Analysis in a Phase Field Approach. In: 16th U.S. National Conference on Theoretical and Applied Mechanics, USNCTAM 2010, 2010.
- [11] Douglas J., Rachford H.: On the Numerical Solution of Heat Conduction Problems in Two and Three Space Variables, Transactions of American Mathematical Society, vol. 82, pp. 421–439, 1956.
- [12] Duddu R., Lavier L., Hughes T.J.R., Calo V.M.: A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high-order B-spline finite elements, International Journal of Numerical Methods in Engineering, vol. 89(6), pp. 762–785, 2012.
- [13] Gomez H., Calo V.M., Bazilevs Y., Hughes T.J.R.: Isogeometric analysis of the Cahn–Hilliard phase-field model, Computer Methods in Applied Mechanics and Engineering, vol. 197, pp. 4333–4352, 2008.
- [14] Gomez H., Hughes T.J.R., Nogueira X., Calo V.M.: Isogeometric analysis of the isothermal Navier–Stokes–Korteweg equations, Computer Methods in Applied Mechanics and Engineering, vol. 199, pp. 1828–1840, 2010.
- [15] Gao L., Calo V.M.: Fast Isogeometric Solvers for Explicit Dynamics, Computer Methods, Applied Mechanics and Engineering, vol. 274(1), pp. 19–41, 2014.
- [16] Gao L., Calo V.M.: Preconditioners based on the Alternating-Direction-Implicit algorithm for the 2D steady-state diffusion equation with orthotropic heterogeneous coefficients, Journal of Computational and Applied Mathematics, vol. 273(1), pp. 274–295, 2015.
- [17] Gao L.: Kronecker Products on Preconditioning, PhD. Thesis, King Abdullah University of Science and Technology 2013.
- [18] Guermond J.L., Minev P., Shen J.: An overview of projection methods for incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol. 195, pp. 6011–6054, 2006.
- [19] Guermond J.L., Minev P.: A new class of fractional step techniques for the incompressible Navier-Stokes equations using direction splitting, Comptes Rendus Mathematique, vol. 348(9–10), pp. 581–585, 2010.
- [20] Gurgul G., Woźniak M., Łoś M., Szeliga D., Paszy´nski M.: Open source JAVA implementation of the parallel multi-thread alternating direction isogeometric L 2 projections solver for material science simulations, Computer Methods in Material Science, vol. 17(1) 2017.
- [21] Hairer E., Wanner G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (second ed.), Berlin, Springer-Verlag, section IV.3, 1996.
- [22] Horn R.A., Johnson C.R.: Matrix Analysis, Cambridge University Press 1990.
- [23] Hossain S., Hossainy S.F.A., Bazilevs Y., Calo V.M., Hughes T.J.R.: Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls, Computational Mechanics, vol. 49, pp. 213–242, 2011. https://doi.org/10.1007/s00466-011-0633-2.
- [24] Hsu M.-C., Akkerman I., Bazilevs Y.: High-performance computing of wind turbine aerodynamics using isogeometric analysis, Computers and Fluids, vol. 49(1), pp. 93–100, 2011.
- [25] Łoś M., Paszyński M., Kłusek A., Dzwinel W.: Application of fast isogeometric L 2 projection solver for tumor growth simulations, Computer Methods in Applied Mechanics and Engineering, vol. 316, pp. 1257–1269, 2017.
- [26] Łoś M., Woźniak M., Paszyński M., Dalcin L., Calo V.M.: Dynamics with Matrices Possessing Kronecker Product Structure, Procedia Computer Science, vol. 51, pp. 286–295, 2015.
- [27] Łoś M., Woźniak M., Paszyński M., Lenharth A., Pingali K.: IGA-ADS : Isogeometric analysis FEM using ADS solver, Computer & Physics Communications, vol. 217, pp. 99–116, 2017.
- [28] Łoś M., Behnoudfar P., Paszyński M., Calo V.M.: Fast isogeometric solvers for hyperbolic wave propagation problems, Computers & Mathematics with Applications, vol. 80(1), pp. 109–120, 2020.
- [29] Łoś M.,Paszyński M., Applications of Alternating Direction Solver for simulations of time-dependent problems, Computer Science, vol. 18(2), pp. 117–128, 2017.
- [30] Paszyński M.: Fast Solvers for Mesh-Based Computations, Taylor & Francis, CRC Press, 2016.
- [31] Peaceman D.W., Rachford Jr. H.H.: The Numerical Solution of Parabolic and Elliptic Differential Equations, Journal of Society for Industrial and Applied Mathematics, vol. 3(1), pp. 28–41, 1955.
- [32] Piegl L., Tiller W.: The NURBS Book, Second Edition, Springer-Verlag, New York, 1997.
- [33] Wachspress E.L., Habetler G.J.: An alternating-direction-implicit iteration technique, Journal of Society for Industrial and Applied Mathematics, vol. 8(2), pp. 403–423, 1960.
- [34] Woźniak M., Łoś M., Paszyński M., Dalcin L.D., Calo V.M.: Parallel Fast Isogeometric Solvers for Explicit Dynamics, Computing and Informatics, vol. 36, pp. 1001–1022, 2017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b3ac49a-a48f-49ec-8314-7fd1a35fba59