Identyfikatory
Warianty tytułu
Assessment of geometry of radiation source-plant-detector on value of the remote sensing indices
Języki publikacji
Abstrakty
The aim of this study is an analysis of an influence of geometry electromagnetic radiation (lamp or sun) - research target (leaves) - detector. The electromagnetic radiation was emitted by the lamp ASD ProLamp, which was installed at 30°, 45°, 90°, 135°, 150° angles. Reference measurements was a system in which the lamp and detector were set vertically. During the laboratory measurements spectral properties of Rhoeo spathacea were acquired. Based on the measured spectral curves of vegetation remote sensing indices were calculated and statistical ANOVA tests were applied. The results confirmed the relationship between the geometry of the lamp - plant - detector. The higher the angle the incident radiation results were less diverse and close to optimum values were observed. Analysis of the indicators showed that the high variability characterized by the indicators measuring water, chlorophyll contents and overall vigor parameters of plants. While the tests can be used for measuring rates of nitrogen content, the absorption of carotenoids and photosynthetically active radiation.
Czasopismo
Rocznik
Tom
Strony
15--26
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
- Katedra Geoinformatyki i Teledetekcji ,Wydział Geografii i Studiów Regionalnych Uniwersytetu Warszawskiego
autor
- Katedra Geoinformatyki i Teledetekcji ,Wydział Geografii i Studiów Regionalnych Uniwersytetu Warszawskiego
autor
- Katedra Geoinformatyki i Teledetekcji, Wydział Geografii i Studiów Regionalnych Uniwersytetu Warszawskiego
Bibliografia
- 1. Biliouris D., Berge K., Aardt A., Muys B., Coppin P., 2006, Hyperspectral bidirectional reflectance measurements of Fagus Sylvatica leaves. New Quality in Environmental Studies, s. 573-583.
- 2. Bousquet L., Lacherade S., Jacquemoud S., Moya I., 2005, Leaf BRDF measurements and model for specular and diffuse components differentiation. Remote sensing for environment, t. 98, s. 201-211
- 3. Ceccato P., Flasse S., Tarantola S., Jacquemoud S., Gregoire J.M., 2001, Detecting Vegetation Leaf Water Content Using Reflectance in the Optical Domain. Remote Sensing of Environment 77, s. 22-33.
- 4. Cierniewski J., Verbrugghe M., 1993, Geomteryczny model dwukierunkowego odbicia spektralnego od gleby w zakresie widma widzialnego i bliskiej podczerwieni. Teledetekcja środowiska, t. 23, s. 37-51.
- 5. Cierniewski J., 1998, Wirtualne powierzchnie symulujące jasność gleb w zmieniających się warunkach ich oświetlenia i obserwacji. Fotointerpretacja w Geografii, t. 27, s. 34-47.
- 6. Cierniewski J., Piekarczyk J., Marlewski A., 1999, Modelowanie kierunkowego odbicia od powierzchni gleby w zakresie optycznym z uwzględnieniem kierunku ich uprawy. Fotointerpretacja w Geografii t.30, s. 62-74.
- 7. Cierniewski J., 2001, Model kierunkowego odbicia od gleb uprawnych uwzględniający obecność agregatów glebowych oraz mikroreliefu powierzchni gleby. Bogucki Wyd. Nauk., Poznań.
- 8. Cierniewski J., 2009, Laboratoryjne pomiary kierunkowego odbicia spektralnego od powierzchni gleby przy zmieniającej się ich szorstkości i oświetleniu. Archiwum Fotogrametrii, Kartografii i Teledetekcji, vol. 19, s.71-80.
- 9. Comar A., Baret F., Vienot F., Yan L., Solan B., 2012, Wheat leaf bidirectional reflectance measurements: Description and quantification of the volume, specular and hot-spot scattering features. Remote sensing for environment 121, s. 26-35.
- 10. Datt B., 1999, A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests Using Eucalyptus Leaves. Journal of Plant Physiology 154, s. 30-36.
- 11. Daughtry C.S.T., Hunt E.R., McMurtrey J.E., 2004, Assessing Crop Residue Cover Using Shortwave Infrared Reflectance. Remote Sensing of Environment 90, s. 126-134.
- 12. Fourty T., Baret F., Jacquemoud S., Schmuck G., Verdebout J., 1996, Leaf Optical Properties with Explicit Description of Its Biochemical Composition: Direct and Inverse Problems. Remote Sensing of Environment 56, s. 104-117.
- 13. Fisher R., 1918, Studies in Crop Variation. I. An examination of the yield of dressed grain from Broadbalk. Journal of Agricultural Science 11, s. 107–135.
- 14. Gamon J.A., Penuelas J., Field C.B., 1992, A Narrow-Waveband Spectral Index That Tracks Diurnal Changes in Photosynthetic Efficiency. Remote Sensing of Environment, nr. 41, s. 35-44.
- 15. Gamon J.A., Serrano L., Surfus J.S., 1997, The Photochemical Reflectance Index: An Optical Indicator of Photosynthetic Radiation Use Efficiency Across Species, Functional Types and Nutrient Levels. Oecologia, nr. 112, s. 492-501.
- 16. Gao F., Schaaf C.B., Strahler A.H., Jin Y., Li X., 2003, Detecting vegetation structure using a kernel-based BRDF model. Remote Sensing of Environment, nr. 86, s. 198-205.
- 17. Girolamo L., 2003, Generalizing the definition of the bi-directional reflectance distribution function. Remote Sensing of Environment, nr. 88, s. 479-482.
- 18. Gitelson A.A., Merzlyak M.N., 1994, Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus Hippocastanum L. and Acer Platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. Journal of Plant Physiology, nr. 143, s. 286-292.
- 19. Gitelson A.A., Zur Y., Chivkunova O.B., Merzlyak M.N., 2002, Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy. Photochemistry and Photobiology 75, s. 272-281.
- 20. Hardisky M.A., Klemas V., Smart R.M., 1983, The Influences of Soil Salinity, Growth Form, and Leaf Moisture on the Spectral Reflectance of Spartina Alterniflora Canopies. Photogrammetric Engineering and Remote Sensing, nr. 49, s. 77-83.
- 21. Heitz H., Kögel A., 1995, 200 najpiękniejszych roślin doniczkowych, Oficyna Wydawnicza „Delta W-Z”, Warszawa, s. 184.
- 22. Huete A.R., Liu H., Batchily K., Leeuwen W., 1997, A Comparison of Vegetation Indices Over a Global Set of TM Images for EOS-MODIS, Remote Sensing of Environment , nr. 59(3), s. 440-451.
- 23. Huete A., Didan K., Miura T., Rodriguez E.P., Gao X., Ferreira L.G., 2002, Overwiew of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, nr. 83, s. 195-213.
- 24. Jackson T.J., Chen D., Cosh M., Li F., Anderson M., Walthall C., Doriaswamy P., Hunt E.R., 2004, Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sensing of Environment, nr. 92, s. 475-482.
- 25. Jarocińska A., Zagajewski B., 2008, Korelacje naziemnych i lotniczych teledetekcyjnych wskaźników roślinności dla zlewni Bystrzanki. Teledetekcja Środowiska, t. 40, s. 100-124.
- 26. Kaufman Y.J., 1992, Atmospherically resistant vegetation index (ARVI) for EOS-MODIS, Geoscience and Remote Sensing, nr 30, s. 261-270.
- 27. Kaufman Y.J. Tanre D., 1996, Strategy for Direct and Indirect Methods for Correcting the Aerosol Effect on Remote Sensing: from AVHRR to EOS-MODIS. Remote Sensing of Environment, nr. 55, s. 65-79.
- 28. Kelley E., Jones G. R., Germer T. A., 1998, Display reflectance model based on the BRDF, Elsevier, No. 19, s. 27-34.
- 29. Królewicz S., 2010, Analiza wpływu zjawiska BRDF na jasność obiektów w obrębie bloku zdjęć lotniczych. Archwium Fotogrametrii, Kartografii i Teledetekcji, vol. 21, s. 201-210.
- 30. Luszniewicz A., Słaby T., 2001, Statystyka z pakietem komputerowym Statistica TM PL. Teoria i zastosowanie, Wydawnictwo C.H. Beck, Warszawa, s. 222-225.
- 31. Merzlyak J.R., Gitelson A.A., Chivkunova O.B., Rakitin V.Y., 1999. Non-destructive Optical Detection of Pigment Changes During Leaf Senescence and Fruit Ripening. Physiologia Plantarum, nr 106, s. 135-141.
- 32. Nicodemus F.E., 1970, Reflectance nomenclature and directional reflectance and emissivity. Applied Optics, vol. 9(6), s. 1474-1475.
- 33. Peñuelas J., Baret F., Filella I., 1995, Semi-Empirical Indices to Assess Carotenoids/Chlorophyll-a Ratio from Leaf Spectral Reflectance. Photosynthetica, t. 31, s. 221-230.
- 34. Rahman H., Quadir D.A., Zahedul Islam A.Z.M., Dutta S., 1999, Viewing effects on remote sensing monitoring of Wheat and Rice crops. GeoCarto International, vol.14, No. 1, s.74-78.
- 35. Rouse J.W., Haas R.H., Schell J.A., Deering D.W., 1973, Monitoring the vernal advancement and retro gradation (green wave effect) of natural vegetation. Prog. Rep. RSC 1978-1, Remote Sensing Center, Texas A&M Univ., College Station, nr E73-106393, 93 (NTIS No. E73-106393).
- 36. Rouse J.W., Haas R.H., Schell J.A., Deering D.W., 1973, Monitoring Vegetation Systems in the Great Plains with ERTS. Third ERTS Symposium, NASA SP-351 I, s. 309-317.
- 37. Schaepman-Strub G., Schaepman M., Dangel S., Painter T., Martonchik J., 2005, The importance of reflectance terminology in imaging spectroscopy. Proceedings of 4th EARSeL Workshop on Imaging Spectroscopy. New quality in environmental studies. EARSeL and Warsaw University, Warsaw, s.18-28.
- 38. Sims D.A., Gamon J.A., 2002, Relationships Between Leaf Pigment Content and Spectral Reflectance Across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sensing of Environment, nr 81, s. 337-354.
- 39. Verbrugghe M., Cierniewski J., 1995, Effect of Sun and view geometries on cotton bidirectional reflectance. Test of a geometrical model. Remote Sensing of Environment, nr 54, s.189-197.
- 40. Vogelmann J.E., Rock B.N., Moss D.M., 1993, Red Edge Spectral Measurements from Sugar Maple Leaves, International Journal of Remote Sensing, T. 14, s. 1563-1575
- 41. Zagajewski B., 2010, Wyniki klasyfikacji roślinności Tatr Wysokich, Teledetekcja Środowiska, T. 43, s. 38-44.
- 42. Zagajewski B., Jarocińska A., Olesiuk D., 2009, Metody i techniki badań geoinformatycznych, WGiSR UW, Warszawa, ss. 118.
- 43. http://kwiaty-doniczkowe.wieszjak.pl/kwiaty-na-stanowiskopolcieniste/220874,Reo-meksykanskie-Rhoeo-spathacea. html (stan na 15.12.2011)
- 44. http://naradka.wordpress.com/2011/02/18/reo-meksykanskie/(stan na 15.12.2011)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b390e6b-abbb-4525-9795-8ffe704eee0a