PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the glass-crystalline bond microstructure on the cutting ability of grinding wheels with Al2O3 abrasive grains

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Standard ceramic abrasive tools are manufactured using glass bonds or mineral resources, in which the microstructure of the bonding bridges cannot be controlled. In this study, a new type of glass-crystalline bond was used to combine mixed abrasive grains from microcrystalline and monocrystalline corundum into an abrasive tool. The glass-crystalline bond has a fine crystalline structure (particle size of the crystalline phase: 1-1.5 µm) and perfectly moistens the abrasive grains. This fact and the generated crystalline phase with a high coefficient of brittle fracture resistance enable the production of tools with a higher porosity and selfsharpening ability in comparison to grinding wheels with the use of industrial bond, which results in high performance indices with a longer service life.
Rocznik
Strony
207--214
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Department of Technical Physics and Nanotechnology, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland
  • Faculty of Mechanical Engineering, Department of Production Engineering, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland
  • R&D Department, Andre Abrasive Articles Sp. z o.o. Sp. k., Przemysłowa 10, 62-600 Koło, Poland
  • R&D Department, Andre Abrasive Articles Sp. z o.o. Sp. k., Przemysłowa 10, 62-600 Koło, Poland
Bibliografia
  • 1. Zi-cheng Li, Zhi-hong Li , Ai-ju Zhang, Yu-mei Zhu, Influence of thermal treatment conditions on two-dimensional crystal growth of nanocrystal corundum abrasives, Materials Research Bulletin 44 (2009) 762-767.
  • 2. Wen Feng Ding & Jiu Hua Xu & Zhen Zhen Chen & Hong Hua Su & Yu Can Fu, Grain wear of brazed polycrystalline CBN abrasive tools during constant-force grinding Ti–6Al–4V alloy, Int J Adv Manuf Technol (2011) 52:969–976.
  • 3. Frantisek Holesovsky, Michal Hrala, Integrity of ground cylindrical surface, Journal of Materials Processing Technology 153–154 (2004) 714–721.
  • 4. Qing Miao, Wenfeng Ding, Yulong Gu, Jiuhua Xu, Comparative investigation on wear behavior of brown alumina and microcrystalline alumina abrasive wheels during creep feed grinding of different nickel-based superalloys, Wear 426–427 (2019) 1624–1634.
  • 5. Jiang Shia, Feng He, Junlin Xie, Xiaoqing Liu, Hu Yang, Effects of Na2O/BaO ratio on the structure and the physical properties of low-temperature glass-ceramic vitrified bonds, Ceramics International 44 (2018) 10871–10877.
  • 6. Xuezhi Wang, Zhelun Ma, Xue Sun, Tianbiao Yu, Wanshan Wang, Effects of ZrO2 and Y2O3 on physical and mechanical properties of ceramic bond and ceramic CBN composites, International Journal of Refractory Metals & Hard Materials 75 (2018) 18–24.
  • 7. Dongdong Shan, Zhihong Li, Yumei Zhu , Hang Ye, Kai Gao, Yanyan Yu, Influence of TiO2 on the physical properties of low-temperature ceramic vitrified bond and mechanical properties of CBN composites, Ceramics International 38 (2012) 4573–4578.
  • 8. Baohui Zhao, Zhihong Li , Yumei Zhu, Effect of mullite particles on the mechanical strength and chemical durability of vitrified CBN composites, Composites: Part B 54 (2013) 265–268.
  • 9. Baohui Zhao,ZhihongLi, YumeiZhu, Effect of polycrystalline mullite fibers on the properties of vitrified bond and vitrified CBN composites, Ceramics International 39 (2013) 2863–2868.
  • 10. C.J. Engberg, E.H. Zehms, Thermal expansion of Al2O3, BeO, MgO, B4C,SiC, and TiC above 1000 8C, J. Am. Ceram. Soc. 42 (1958) 300–305.
  • 11. A. Petric, H. Lingw, Electrical conductivity and thermal expansion of spinels at elevated temperatures, J. Am. Ceram. Soc. 90 (2007)1515–1520.
  • 12. Yuan-Hong Wang, Zhan-Guo Liu, Jia-Hu Ouyang , Hong-Zhi Liu, Ren-Xian Zhu, Preparation and thermophysical properties of LaMgAl11O19– Yb3Al5O12 ceramic composites, Ceramics International 37 (2011) 2489–2493.
  • 13. Chun-Hway, Hsuch, Paul F. Becher, Residual thermal stresses In ceramic composites. Part I: with ellipsoidal inclusions, Materials Science and Engineering A212 (1996) 22-28.
  • 14. M.G. Rasteiro , Tiago Gassman , R. Santos , E. Antunes , Crystalline phase characterization of glass-ceramic Glazer, Ceramics International 33 (2007) 345–354
  • 15. B. Jiang, M.H. Fang *, Z.H. Huang, Y.G. Liu, P. Peng, J. Zhang, Mechanical and thermal properties of LaMgAl11O19, Materials Research Bulletin 45 (2010) 1506–1508.
  • 16. G.A. Gogotsin, Classification of ceramics and glass (edge chipping and fracture toughness), Ceramics International 40(2014)5591–5596.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b31c623-5248-4b9c-987e-a032dc27bb8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.