PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Partial crystallization of the erbium/ytterbium co-doped oxyfluoride glass

Identyfikatory
Warianty tytułu
PL
Kontrolowana krystalizacja współdomieszkowanych erbem i iterbem szkieł tlenofluorkowych
Języki publikacji
EN
Abstrakty
EN
Erbium/Ytterbium co-doped oxyfluoride glass-ceramics can be applied as the optical fiber core. For that reason its crystallization kinetics is described in terms of the JMAK model (Johnson-Mehl-Avrami-Kolmogorov) with later updates. Differential Thermal Analysis (DTA) measurements of glass and glassceramics powders (with size comparable to the diameter of multimode optical fiber core) combined with X-ray diffraction (XRD) measurements enables both the identification of growing nanocrystals structure and determination of the specific annealing parameters. This specific glass powder annealing results in the desired microstructure of glass-ceramics fibers (nanocrystals embedded in the glassy host).
PL
Zamiarem autorów było precyzyjne określenie warunków wygrzewania włókien optycznych ze szkieł tlenofluorkowych, współdomieszkowanych erbem i iterbem, przeznaczonych na rdzenie aktywnych światłowodów wielodomowych. Pożądana, finalna mikrostruktura włókien to jednorodnie rozłożone w matrycy szklistej nanokryształy wzbogacone w erb i iterb. Ponieważ średnica rdzeni włókien wielodomowych jest standaryzowana (50, 62,5 lub 100 μm), do badań użyto frakcji proszków szkieł o rozmiarach 45÷100 μm.
Rocznik
Strony
204--214
Opis fizyczny
Bibliogr. 42 poz., fig., tab.
Twórcy
autor
  • University of Applied Sciences Muenster, Steinfurt, Germany
autor
  • Silesian University of Technology, Katowice, Poland
  • Silesian University of Technology, Katowice, Poland
Bibliografia
  • [1] Wallenberger F. T., Bingham P. A. (eds.): Fiberglass and glass technology. Springer Science+Business Media, LLC (2010).
  • [2] Baer R.: FaseroptischeBeleuchtungssysteme. Elektropraktiker, Berlin 54 (2000) 1050÷1055.
  • [3] Biswas K., Sontakke A. D., Ghosh J., Annapurna K.: Enhanced blue emission from transparent oxyfluoride glass ceramics containing Pr3+: BaF2 nano-crystals. J. Am. Ceram. Soc. 93 (2010) 1010÷1017.
  • [4] Rayleigh L.: The incidence of light upon a transparent sphere of dimensions comparable with the wave-length. Proc. Royal Soc. London A 84 (1910) 25÷46.
  • [5] Keck D. B., Maurer R. D., Schultz P. C.: On the ultimate lower limit of attenuation in glass optical waveguides. Appl. Phys. Lett. 22 (1973) 307÷312.
  • [6] Fedorov P. P., Luginina A. A., Popov A. I.: Transparent oxyfluoride glassceramics. J. Fluorine Chem. 172 (2015) 22÷50.
  • [7] Gugov M., Muller C. Russel: Transparent oxyfluoride glass ceramics codopedwith Er3+ and Yb3+ — Crystallization and upconversion spectroscopy. J. Solid State Chem. 184 (2011) 1001÷1007.
  • [8] Punjabi Xiang Wu, Tokatli-Apollon A., El-Rifai M., Lee H., Zhang Y., Wang C., Liu Z., Chan E. M., Duan C., Han G.: Amplifying the red-emission of upconvertingnanoparticles for biocompatible clinically used prodrug- induced photodynamictherapy. ACS Nano 8 (2014) 10621÷10630.
  • [9] Chen G., Liu H., Somesfalean G., Liang H., Zhang Z.: Upconversion emissiontuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions. Nanotechnology 20 (2009) 385704÷38710.
  • [10] Rivera V. A. G., Ledemi Y., El-Amraoui M., Messaddeq Y., Marega E. Jr.: Green-to-red light tuning by up-conversion emission via energy transfer in Er3 +–Tm3 +-co-doped germanium–tellurite glasses. J. Non-Crystalline Solids 392–393 (2014) 45÷50.
  • [11] Acioli L. H., Gomes A. S. L., de Araujo Cid B., Ironside C. N.: Infraredto- blue frequency upconversion in a Pr3+-doped silicate fiber. Phys. Rev. B 54 (1996) 9126÷9130.
  • [12] Mazurek P., Czyzak P., de Waardt H., Turkiewicz J.: Semiconductor optical amplifiers and Raman amplification for 1310-nm wavelength division multiplexed transmission. Optical Eng. 54 (2015) 116104–1–8.
  • [13] Liu Y., Liu X., Wang W., Yu T., Zhang Q.: Intense 2.7 μmmidinfraredemissionof Er3+ in oxyfluoride glassceramiccontaining NaYF4 nanocrystals. Mater. Res. Bull. 76 (2016) 305÷310.
  • [14] Zanotto E. D.: A bright future for glass-ceramics. Am. Cer. Soc. Bull., 89 (2010) 19÷27.
  • [15] Karpukhina N., Hill R. G., Law R. V.: Crystallisation in oxide glasses – a tutorial review. Chem. Soc. Rev. 43 (2014) 2174÷2186.
  • [16] Ueda J., Tanabe S., Ishida A.: Surface plasmon excited infrared-to-visibleupconversion in Er3+-doped transparent glass ceramics. J. Non-Cryst. Solids 355 (2009) 1912÷1915.
  • [17] Kishi Y., Tanabe S., Tochino S., Pezzotti G.: Fabrication and efficient infrared-to-visible upconversion in transparent glass ceramics of Er–Yb co-doped CaF2 nano-crystals. J. Am. Ceram. Soc. 88 (2005) 3423÷3426.
  • [18] Ma C.-S., Jia Q., Li L.-J., Zhou D. C., Yang Z.-W., Song Z.-G., Qiu J.- B.: Up-conversion luminescence properties and energy transfer of Er3+/ Yb3+ co-doped oxyfluoride glass ceramic containing CaF2 nano-crystals. Chin. Phys. B 23 (2014) 057802–1–5.
  • [19] Kittel C.: Introduction to solid state physics. John Wiley & Sons, New York, NY, USA (1996).
  • [20] Differenzthermoanalyse, Grundlagen DIN 51007 (Juni 1994).
  • [21] Zanotto E. D.: Glass crystallization research — A 36-Year retrospective. Part I, Fundamental studies. Int. J. Appl. Glass Sci. 4 (2013) 105÷116.
  • [22] Fokin V. M., Zanotto E. D., Yuritsyn N. S., Schmelzer J. W. P.: Homogeneous crystal nucleation in silicate glasses: A 40 years perspective. J. Non-Cryst. Solids 352 (2006) 2681÷2714.
  • [23] Fevre A., Murat M.: Analyse theorique des lois cinetiques couramment utilisees en thermoanalyse pour l’etude des reactions solide-gaz. J. Thermal. Anal. 7 (1975) 429÷462.
  • [24] Weinberg M. C., Birnie III D. P, Shneidman V. A.: Crystallization kinetics and the JMAK equation. J. Non-Crystalline Solids 219 (1997) 89÷99.
  • [25] Malek J.: Kinetic analysis of crystallization processes in amorphous materials. Thermochim. Acta 355 (2000) 239÷253.
  • [26] Ray C. S., Huang W. H., Day D. E.: New method for determining the nucleation and crystal-growth rates in glasses. J. Am. Ceram. Soc. 74 (1991) 60÷66.
  • [27] Vyazovkin S., Burnham A. K., Criado J. M., Pérez-Maqueda L. A., Popescu C., Sbirrazzuoli N.: ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520 (2011) 1÷19.
  • [28] Brown M. E.: Introduction to thermal analysis. 2nd ed., Kluwer, Dordrecht (2001).
  • [29] Matusita K., Sakka S.: Kinetic study on non-isothermal crystallisation of glass by thermal analysis. Thermochim. Acta 33 (1979) 351÷354.
  • [30] Perez-Maqueda L. A., Criado J. M., Malek J.: Combined kinetic analysis for crystallization kinetics of non-crystalline solids. J. Non-Cryst. Solids 320 (2003) 84÷91.
  • [31] Doyle C.: Kinetic analysis of thermogravimetric data. J. Appl. Polymer Sci. 5 (1961) 285÷292.
  • [32] Kissinger H. E.: Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Nat. Bur. Stand. 57 (1956) 217÷221.
  • [33] Kissinger H. E.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29 (1957) 1702÷1706.
  • [34] Coats A. W., Redfern J. P.: Kinetic parameters from thermogravimetric data. Nature 201 (1964) 68÷69.
  • [35] Flynn J. H.: Analysis of DSC results by integration. Thermochim. Acta 217 (1993) 129÷149.
  • [36] Ozawa T.: Kinetic non-isothermal crystallization. Polymer 12 (1971) 150÷158.
  • [37] Khawam A., Flanagan D. R.: Solid-state kinetic models: Basics and mathematicalfundamentals. J. Phys. Chem. B 110 (2006) 17315÷17328.
  • [38] Dabas P., Hariharan K.: Nucleation and crystallization kinetics of rapidly quenched lithium pyrophosphate glass. Solid State Ionics 243 (2013) 42÷49.
  • [39] Augis J. A., Bennett J. E.: Calculation of Avrami parameters for heterogeneous solid state reactions using a modified Kissinger’s method. J. Thermal Anal. 13 (1978) 283÷292.
  • [40] Augustyn E., Zelechower M., Stroz D., Chraponski J.: The microstructure of erbium–ytterbium co-doped oxyfluoride glass-ceramic optical fibers. Optical Mater. 34 (2012) 944÷950.
  • [41] Ma C.-S., Jiao Q., Li L.-J., Zhou D. C., Yang Z.-W., Song Z.-G., Qiu J.-B.: Up-conversion luminescence properties and energy transfer of Er3+/Yb3+ co-doped oxyfluoride glass ceramic containing CaF2 nano-crystals. Chin. Phys. B 23 (2014) 057802–1÷5.
  • [42] Zelechower M., Czerska E., Augustyn E., Plewa J., Lisiecki R., Stroz D., Rzychon T., Rodak K., Ryba-Rymanowski W.: The crystallization kinetics of Er/Yb co-doped oxyfluoride glasses. Proc. SPIE 10325 (2017) 1032509–1÷6.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b2d1e07-677d-4492-a435-814d364179f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.