PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selective flotation of witherite from calcite using potassium chromate as a depressant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Witherite has been widely used as an industrial and environmental source of barium, with calcite being the primary associated carbonate mineral. However, few studies have been conducted to effectively concentrate witherite from barium ores. In this work, with the treatment of potassium chromate (K2CrO4) and sodium oleate (NaOL), witherite was selectively separated from calcite through selective flotation at different pH conditions. In addition, contact angle, Zeta potential, adsorption and X-ray photoelectron spectroscopy measurements were performed to characterize the separation mechanisms. The results demonstrated that NaOL had a strong collecting ability for both witherite and calcite; nevertheless, witherite could be effectively selected from calcite with the highest recovery at pH 9 in the presence of K2CrO4. From the XPS measurements, NaOL and K2CrO4 were found to be primarily attached to the surfaces of witherite and calcite through chemisorption. The presence of K2CrO4 on the surface of calcite adversely influenced the NaOL adsorption, which could make the flotation separation efficient and successful.
Rocznik
Strony
565--574
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
  • Hubei Key Laboratory of Mineral Resources Processing & Environment, Wuhan 430070, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
  • Hubei Key Laboratory of Mineral Resources Processing & Environment, Wuhan 430070, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
  • Hubei Key Laboratory of Mineral Resources Processing & Environment, Wuhan 430070, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
  • Hubei Key Laboratory of Mineral Resources Processing & Environment, Wuhan 430070, China
Bibliografia
  • ALAVI A.M., MORSALI A., 2008. Syntheses of BaCO3 nanostructures by ultrasonic method. Ultrason. Sonochem., 15, 833-838.
  • BARKHORDARI H.R., JORJANI E., ESLAMI A., Noaparast M., 2009. Occurrence mechanism of silicate and aluminosilicate minerals in Sarcheshmeh copper flotation concentrate. Int. J. Min. Met. Mater., 16, 494-499.
  • CHAU T.T., 2009. A review of techniques for measurement of contact angles and their applicability on mineral surfaces. Minerals Engineering, 22, 213-219.
  • CHIBOWSKI E., PEREA-CARPIO R., 2002. Problems of contact angle and solid surface free energy determination. Adv. Colloid Interface Sci., 98, 245-264.
  • CHEN X.M., PENG Y.J., BRADSHAW D., 2014. The effect of particle breakage mechanisms during regrinding on the subsequent cleaner flotation. Miner. Eng., 66-68, 157-164.
  • DADKHAH M., SALAVATI-NIASARI M., DAVAR F., 2013. A new inorganic framework in the synthesis of barium carbonate nanoparticles via convenient solid state decomposition route. Adv. Powder Technol., 24, 14-20.
  • EARNEST C.M., 1989. Calorimetric heat of transition assignments by microcomputer-based differential thermal analysis: Part II. The γ-β (orthorhombic to hexagonal) transition of barium carbonate, Thermochim. Acta, 137, 365-371.
  • GAO W., ZHOU B., MA X.Y., LIU Y., WANG Z.C., ZHU Y.C., 2011. Preparation and characterization of BaSO4/poly (ethylene terephthalate) nanocomposites. Colloids Surf., A: Physicochem. Eng. Aspects, 385, 181-187.
  • GAO J.B., YANG R.D., CHEN J., ZHENG L.L., CHENG W., WEI H.R., 2017. Multiple proxies indicating methane seepage as the origin of Devonian large barite deposit in Zhenning-Ziyun, Guizhou, SW China. Ore Geol. Rev., 80, 18-26.
  • GAO, Z.Y., XIE, L., CUI, X., HU, Y.H., SUN, W., ZENG, H.B., 2018a. Probing Anisotropic Surface Properties and Surface Forces of Fluorite Crystals. Langmuir, 2018, 34: 2511-2521.
  • GAO, Y., GAO, Z., SUN, W., YIN, Z., WANG, J., HU, Y., 2018b. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation. J. Colloid Interface Sci. 512, 39–46.
  • GAO, Y.S., GAO, Z.Y., SUN, W., HU, Y.H., 2016a. Selective flotation of scheelite from calcite: A novel reagent scheme, International Journal of Mineral Processing, 154,10-15.
  • GAO, Z.Y., GAO, Y.S., ZHU, Y.Y., HU, Y.H., SUN, W., 2016b. Selective flotation of calcite from fluorite: a novel reagent schedule. Minerals, 6 (4), 114.
  • GUO X.H., MENG F.L., QU X.N., WANG M.J., MAO C.C., ZHANG J., WANG W.V., YU S.H., 2012. Mineralization of unique barium carbonate crystal superstructures controlled by a liquid crystalline phase polymer. Cryst. Eng. Comm., 14, 3213-3219.
  • HAN H.S., HU Y.H., SUN W., LI X.D., CAO C.G., LIU R.Q., YUE T., MENG X.S., GUO Y.Z., WANG J.J., GAO Z.Y., CHEN P., HUANG W.S., LIU J., XIE J.W., CHEN Y.L., 2017. Fatty acid flotation versus BHA flotation of tungsten minerals and their performance in flotation practice. Int. J. Miner. Process. 159, 22–29.
  • HU L.N., WANG G.X., CAO R., YANG C., CHEN X., 2014. Fabrication and surface properties of hydrophobic barium sulfate aggregates based on sodium cocoate modification, Appl. Surf. Sci., 315, 184-189.
  • HUANGPU S.Y., 1985. The practice of improving the quality of molybdenum concentrate by using Potassium chromate. China Molybdenum Industry, 01, 31-41.
  • IVAN S., EGON M., 2013. Homogeneous Precipitation by Enzyme-Catalyzed Reactions 2. Strontium and Barium Carbonates. Chem. Mater., 15, 1322-1326.
  • JIAO J.Q., LIU X., GAO W., WANG C.W., FENG H.J., ZHAO X.L., CHEN L.P., 2010. Two-step synthesis of witherite and tuning of morphology. Mater. Res. Bull., 45, 181-185.
  • JIN J.X., GAO H.M., REN Z.J., CHEN Z.J., 2016. The Flotation of Kyanite and Sillimanite with Sodium Oleate as the Collector. Minerals, 6, 90.
  • KARAGIOZOV C., MOMCHILOVA D., 2005. Synthesis of nano-sized particles from metal carbonates by the method of reversed mycelles. Chem. Eng. Process., 44, 115.
  • LÜ Z.C., LIU C.Q., LIU J.J., WU F.C., 2004. The bio-barite in witherite deposits from Southern Qinling and its significance. Prog. Nat. Sci., 14, 889-896.
  • LV S., LI P., SHENG J., SUN W.D., 2007. Synthesis of single-crystalline BaCO3 nanostructures with different morphologies via a simple PVP-assisted method. Mater. Lett., 61, 4250-4254.
  • LI, C., GAO Z., 2017. Tune surface physicochemical property of fluorite particles by regulating the exposure degree of crystal surfaces. Miner Eng, 128, 123-132.
  • LI, C., GAO Z., 2017. Effect of grinding media on the surface property and flotation behavior of scheelite particles. Powder Technol, 322, 386-392.
  • LI L.L., CHU Y., LIU Y., DONG L.H., HUO L., YANG F.Y., 2006. Microemulsion-based synthesis of BaCO3 nanobelts and nanorods. Mater. Lett., 60, 2138-2142.
  • LIU, C., FENG, Q., GUOFAN, ZHANG, 2016. Effect of depressants in the selective flotation of scheelite and calcite using oxidized paraffin soap as collector. Int. J. Miner. Process. 157, 210–215.
  • MARTINEZ A URIBE A CARRILLO F.R ., CORENO J ., ORTIZ J.C ..,2003. Study of ce lestite flotation efficiency using sodium dodecyl sulfonate collector: factorial experiment and statistical analysis of data. Int. J. Miner. Process. 70, 83 97.
  • NAGAJYOTHI P.C., PANDURANGAN M., SREEKANTHC T.V.M., SHIM J., 2016. In vitro anticancer potential of BaCO3 nanoparticles synthesized via green route. J. Photochem. Photobiol., B, 156, 29-34.
  • OZCAN, O., BULUTCU, A.N., 1993. Electrokinetic, infrared and flotation studies of scheelite and calcite with oxine, alkyl oxine, oleoyl sarcosine and quebracho. Int. J. Miner. Process. 39, 275–290.
  • PI D.H., JIANG S.Y., LUO L., YANG J.H., LING H.F., 2004. Depositional environments for stratiform witherite deposits in the Lower Cambrian black shale sequence of the Yangtze Platform, southern Qinling region, SW China: Evidence from redox-sensitive trace element geochemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol, 398, p.125.
  • PENG Y.J., WANG B., GERSON A., 2012. The effect of electrochemical potential on the activation of pyrite by copper and lead ions during grinding. Int. J. Miner. Process., 102-103, 141-149.
  • PRZEMYSLAW B. K., CANDOGAN A., MAHMUT E., MIKOLAJ J. J., OKTAY S., JAN D., 2017. Water Contact Angle on Corresponding Surfaces of Freshly Fractured Fluorite, Calcite and Mica. Physicochem. Probl. Miner. Process., 53, 192 201.
  • QIU Y.S., YU Y.F., ZHANG L.Y., QIAN Y.P.; OUYANG Z.J., 2016. An Investigation of Reverse Flotation Separation of Sericite from Graphite by Using a Surfactant: MF. Minerals, 6, 57.
  • RETO S., MAREK M., SOTIRIS E.P., ALFONS B., 2006. Unprecedented formation of metastable monoclinic BaCO3 nanoparticle. Thermochimica Acta, 445, 23-26.
  • SHI, Q., FENG, Q., ZHANG, G., DENG, H., 2014. A novel method to improve depressants actions on calcite flotation. Miner. Eng. 55, 186–189.
  • SREEDHAR B., VANI S.C., DEVI K.D., RAO B.M.V., RAMBABU C., 2012. Shape Controlled Synthesis of Barium Carbonate Microclusters and Nanocrystallites using Natural Polysachharide-Gum Acacia, Am. J. Mater. Sci., 2, 5-13.
  • TAKAHAGI T., ISHITANI A., 1984. XPS studies by use of the digital difference spectrum technique of functional groups on the surface of carbon fiber. Carbon, 22, 43-46.
  • TIAN, M., GAO, Z., HAN, H., SUN, W., HU, Y., 2017. Improved flotation separation of cassiterite from calcite using a mixture of lead (II) ion / benzohydroxamic acid as collector and carboxymethyl cellulose as depressant. Miner Eng, 113, 68-70.
  • THONGTEM T., TIPCOMPOR N., PHURUANGRAT A., THONGTEM S., 2010. Characterization of SrCO3 and BaCO3 nanoparticles synthesized by sonochemical mothod. Mater. Lett., 64, 510-512.
  • WANG J., GAO Z., GAO Y., HU Y., SUN W, 2016. Flotation separation of scheelite from calcite using mixed cationic/anionic collectors. Miner Eng, 98, 261-263.
  • WANG L., SUN W., HU Y.H., XU L.H., 2014. Adsorption mechanism of mixed anionic/cationic collectors in Muscovite-Quartz flotation system. Miner. Eng., 64, 44-50.
  • XIE A.J., SHEN Y.H., ZHANG C.Y., YUAN Z.W., ZHU X.M., YANG Y.M., 2005. Crystal growth of calcium carbonate with various morphologies in different amino acid systems. J. Cryst. Growth, 285, 436-443.
  • YANG R.D, WEI H.R., BAO M., WANG W., WANG Q., ZHANG X.D., LIU L., 2008. Discovery of hydrothermal venting community at the base of Cambrian barite in Guizhou Province, Western China: implication for the Cambrian biological explosion. Prog. Nat. Sci., 18, 65-69.
  • YONGXIN, L., CHANGGEN, L., 1983. Selective flotation of scheelite from calcium minerals with sodium oleate as a collector and phosphates as modifiers.I.selective flotation of scheelite. Int. J. Miner. Process. 10, 205–218.
  • YU S.H., CÖLFEN H., XU A.W., DONG W.F., 2004. Complex Spherical BaCO3 Superstructures Self-Assembled by a Facile Mineralization Process under Control of Simple Polyelectrolytes. Cryst. Growth Des., 4, 33-37.
  • YU F.T., 2015. Study on Flotation Behavior between Fluorite, Barite and Calcite in Wuling Mountain, M.A. Thesis, Wuhan University of Technology, Wuhan, China.
  • ZHU W.J.; CAI C.H.; LIN J.P.; WANG L.Q.; CHEN L.L.; ZHUANG Z.L., 2012. Polymer micelle-directed growth of BaCO3 spiral nanobelts. Chem. Commun. 48, 8544-8546.
  • ZHANG M., ZHANG B., LI X.H., YIN Z.L., GUO X.Y., 2011. Synthesis and surface properties of submicron barium sulfate particles. Appl. Surf. Sci., 258, 24-29.
  • ZHANG J.S., QUE X.L., (Ed.), 2008. Mineral Processing Reagents, Metallurgy Industry Press, Beijing, Chap. 12
  • ZHAO G., WANG S., ZHONG H., 2015. Study on the Activation of Scheelite and Wolframite by Lead Nitrate. Minerals, 5, 247-258.
  • ZHENG R.J., REN Z.J., GAO H.M., QIAN Y.P., 2017. Flotation Behavior of Different Colored Fluorites Using Sodium Oleate as a Collector. Minerals, 7, 159.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b2c0f4a-1390-49bc-ad36-13dbb31b342c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.