PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Young's modulus for Carboniferous sedimentary rocks and its relationship with uniaxial compressive strength using different methods of modulus determination

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Young’s modulus (E) is one of the basic geomechanical parameters used in rock engineering in practice. It is determined based on uniaxial compressive test (UCS). However, according to International Society of Rock Mechanics it can be calculated by three different ways: as the tangent, secant and average modulus. The results from each method are significantly different. The UCS tests was carried out on 237 rock specimens with the slenderness ratio 2 of Carboniferous claystones, mudstones and sandstones. The axial deformation was always measured automatically by the displacement measurement device (LVDT) built into the testing machine and connected to the hydraulic piston. Then the Young’s modulus was calculated for each test by all three methods. The analysis of the results is presented in this paper to show the difference between all the three moduli calculated for each specimen, and to recommend the best method of Young’s modulus determination. First, the typical range of the elastic linear deformability for the chosen rock types was determined as 25-75% of the peak strength at confidence interval 95% for these sedimentary rocks. The modulus value distributions obtained from each calculation method were compared using statistical parameters: mean value, median, minimum, maximum, standard deviation, mean difference at confidence interval 95%, and non-uniformity coefficient. The proportions between average-secant modulus (Eav/Esec) and average-tangent modulus (Eav/Etan) for the rock samples were estimated. For the studied rocks the obtained values were: 1.10-1.32% for Eav/Esec, 1.08-1.25% for Etan/Esec and 1.01-1.06 for Eav/Etan (for Etan with the range of 20-80% of peak strength). These values show low coherence between secant and average modulus (ca. 23% difference) and good consistency of average and tangent modulus. Based on the analysis, tangent Young’s modulus is recommended as the guiding one at the constant range of 30-70% of the ultimate stress. Secant Young’s modulus, as it comprises not only elastic strain but the pore compaction as well, should be named as modulus of deformability. This conclusion was further confirmed by the regression analysis between UCS and E. The highest regression coefficients and the lowest standard error of the regression was obtained for tangent Young’s modulus determination method. In addition, modulus ratio MR for claystones, mudstones and sandstones was studied and determined as 274, 232 and 223 respectively.
Rocznik
Strony
145--157
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • AGH University of Science and Technology, Faculty of Mining and Geoengineering, 30-059, Krakow, Al. Mickiewicza 30, Poland
  • AGH University of Science and Technology, Faculty of Mining and Geoengineering, 30-059, Krakow, Al. Mickiewicza 30, Poland
autor
  • Silesian University of Technology, Faculty of Organization and Management, 44-100, Gliwice, Ul. Akademicka 2A, Poland
Bibliografia
  • 1. Bell, F. G., & Lindsay, P. (1999). The petrographic and geomechanical properties of some sandstones from the Newspaper Member of the Natal Group near Durban, South Africa. Engineering Geology, 53(1), 57-81. https://doi.org/10.1016/S0013-7952(98)00081-7.
  • 2. Bieniawski, Z. T. (1989). Engineering rock mass classifications: A complete manual for engineers and geologists in mining, Civil and petroleum engineering. Canada: John Wiley & Sons, Inc.
  • 3. Brady, B. H. G., & Brown, E. T. (2006). Rock mechanics. For underground mining (3rd ed.). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-2116-9.
  • 4. Darlington, W. J., Ranjith, P. G., & Choi, S. K. (2011). The effect of specimen size on strength and other properties in laboratory testing of rock and rock-like cementitious brittle materials. Rock Mechanics and Rock Engineering, 44, 513-529. https://doi.org/10.1007/s00603-011-0161-6.
  • 5. Gholami, R., & Rasouli, V. (2014). Mechanical and elastic properties of transversely isotropic slate. Rock Mechanics and Rock Engineering, 47(5), 1763-1773. https://doi.org/10.1007/s00603-013-0488-2.
  • 6. Griffiths, L., Heap, M. J., Xu, T., Chen, Ch-f., & Baud, P. (2017). The influence of pore geometry and orientation on the strength and stiffness of porous rock. Journal of Structural Geology, 96, 149-160. https://doi.org/10.1016/j.jsg.2017.02.006.
  • 7. Hasselman, D. P. H. (1963). Relation Young's between effects of porosity on strength and on modulus of elasticity of polycrystalline materials. Journal of the American Ceramic Society, 46(11), 564-565. https://doi.org/10.1111/j.1151-2916.1963.tb14615.x.
  • 8. Hoek, E., & Brown, E. T. (1980). Underground excavations in rock. London: CRC Press.
  • 9. Hoek, E., & Diederichs, M. S. (2006). Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences, 43(2), 203-215. https://doi.org/10.1016/j.ijrmms.2005.06.005.
  • 10. Hsieh, A., Dyskin, A. V., & Dight, P. (2014). The increase in Young's modulus of rocks under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 70, 425-434. https://doi.org/10.1016/j.ijrmms.2014.05.009.
  • 11. Karaman, K., Cihangir, F., & Kesimal, A. (2015). A comparative assessment of rock mass deformation modulus. International Journal of Mining Science and Technology, 25(5), 735-740. https://doi.org/10.1016/j.ijmst.2015.07.006.
  • 12. Kidybiński, A. (1982). Podstawy geotechniki kopalnianej (The base of mining geotechnics). Katowice: Wydawnictwo Śląsk.
  • 13. Korinets, A., & Alehossein, H. (2002). On the initial non-linearity of compressive stressstrain curves for intact rock. Rock Mechanics and Rock Engineering, 35(4), 319-328. https://doi.org/10.1007/s00603-002-0030-4.
  • 14. Liang, C. Y., Zhang, Q. B., Li, X., & Xin, P. (2016). The effect of specimen shape and strain rate on uniaxial compressive behavior of rock material. Bulletin of Engineering Geology and the Environment, 75(4), 1669-1681. https://doi.org/10.1007/s10064-015- 0811-0.
  • 15. Madhubabu, N., Singh, P. K., Kainthola, A., Mahanta, B., Tripathy, A., & Singh, T. N. (2016). Prediction of compressive strength and elastic modulus of carbonate rocks. Measurement, 88, 202-213. https://doi.org/10.1016/j.measurement.2016.03.050.
  • 16. Malik, M. H., & Rashid, S. (1997). Correlation of some engineering geological properties of the Murree formation at lower Topa (Murree district), Pakistan. Geological Bulletin of University Peshawar, 30, 69-81.
  • 17. Martinez-Martinez, J., Benavente, D., & Garcia-del-Cura, M. A. (2012). Comparison of the static and dynamic elastic modulus in carbonate rocks. Bulletin of Engineering Geology and the Environment, 71(2), 263-268. https://doi.org/10.1007/s10064-011-0399-y.
  • 18. Masoumi, H., Bahaaddini, M., Kim, G., & Hagan, P. (2014). Experimental investigation into the mechanical behavior of Gosford sandstone at different sizes. In Proceedings of 48th U.S. Rock Mechanics/Geomechanics Symposium, 1-4 June, Minneapolis, Minnesota: Vol. 2, (pp. 1210-1215). American Rock Mechanics Association.
  • 19. Małkowski, P., & Ostrowski, Ł. (2017). The methodology for the Young modulus derivation for rocks and its value. Proceedia Engineering, 191, 134-141. https://doi.org/10.1016/j.proeng.2017.05.164.
  • 20. Meng, Q., Zhang, M., Han, L., Pu, H., & Li, H. (2016). Effects of size and strain rate on the mechanical behaviors of rock specimens under uniaxial compression. Arabian Journal of Geosciences, 9, 527. https://doi.org/10.1007/s12517-016-2559-7.
  • 21. Ocak, I. (2008). Estimating the modulus of elasticity of the rock material from compressive strength and unit weight. The Journal of The Southern African Institute of Mining and Metallurgy, 108, 621-626.
  • 22. Palchik, V. (2011). On the ratios between elastic modulus and uniaxial compressive strength of heterogeneous carbonate rocks. Rock Mechanics and Rock Engineering, 44(1), 303-309. https://doi.org/10.1007/s00603-010-0112-7.
  • 23. Palchik, V., & Hatzor, Y. H. (2002). Crack damage stress as a composite function of porosity and elastic matrix stiffness in dolomites and limestones. Engineering Geology, 63(3-4), 233-245. https://doi.org/10.1016/S0013-7952(01)00084-9.
  • 24. Palmstrom, A., & Singh, R. (2001). The deformation modulus of rock masses — comparisons between in situ tests and indirect estimates. Tunnelling and Underground Space Technology, 16(2), 115-131. https://doi.org/10.1016/S0886-7798(01)00038-4.
  • 25. Pells, P. J. N. (1993). Unixial strength testing. In J. A. Hudson (Vol. Ed.), Comprehensive rock engineering: Principles, practice and projects: Vol. 3, (pp. 67-85). Oxford: Pergamon Press.
  • 26. Pinińska, J. (2004). Geospatial data integration in rock engineering. Przegląd Geologiczny, 52(8/2), 806-812.
  • 27. Quinones, J., Arzua, J., Alejano, L. R., Garcia-Bastante, F., Mas Ivars, D., & Walton, G. (2017). Analysis of size effects on the geomechanical parameters of intact granite samples under unconfined conditions. Acta Geotechnica, 12(6), 1229-1242. https://doi.org/10.1007/s11440-017-0531-7.
  • 28. Roshan, H., Masoumi, H., & Hagan, P. C. (2016). On size-dependent uniaxial compressive strength of sedimentary rocks in reservoir geomechanics. Proceedings of 50th U.S. Rock Mechanics/Geomechanics Symposium: Vol. 3, (pp. 2322-2327). American Rock Mechanics Association.
  • 29. Roshan, H., Masoumi, H., Zhang, Y., Al-Yaseri, A. Z., Iglauer, S., Lebedev, M., et al. (2018). Microstructural effects on mechanical properties of shaly sandstone. Journal of Geotechnical and Geoenvironmental Engineering, 144(2), https://doi.org/10.1061/(ASCE)GT.1943-5606.0001831 06017019.
  • 30. Rybacki, E., Reinicke, A., Meier, T., Makasi, M., & Dresen, G. (2015). What controls the mechanical properties of shale rocks? - Part I: Strength and Young's modulus. Journal of Petroleum Science and Engineering, 135, 702-722. https://doi.org/10.1016/j.petrol.2015.10.028.
  • 31. Sabatakakis, N., Koukis, G., Tsiambaos, G., & Papanakli, S. (2008). Index properties and strength variation controlled by microstructure for sedimentary rocks. Engineering Geology, 97(1-2), 80-90. https://doi.org/10.1016/j.enggeo.2007.12.004.
  • 32. Santi, P. M., Holschen, J. E., & Stephenson, R. W. (2000). Improving elastic modulus measurements for rock based on geology. Environmental and Engineering Geoscience, 6(4), 33-346. https://doi.org/10.2113/gseegeosci.6.4.333.
  • 33. Tuncay, E., & Hasancebi, N. (2009). The effect of length to diameter ratio of test specimens on the uniaxial compressive strength of rock. Bulletin of Engineering Geology and the Environment, 68, 491-497. https://doi.org/10.1007/s10064-009-0227-9.
  • 34. Ulusay, R. (2016). Rock properties and their role in rock characterization, modelling and Design. Retrieved 27 June 2018, from www.isrm.net/fotos/gca/1245695019 use_of_rock_properties.pdf.
  • 35. Ulusay, R., & Hudson, J. A. (2007). The complete ISRM suggested methods for rock characterization, Testing and Monitoring. Ankara: ISRM Turkish National Group. Wang, Yu, & Aladejare, A. E. (2016). Bayesian characterization of correlation between uniaxial compressive strength and Young's modulus of rock. International Journal of Rock Mechanics and Mining Sciences, 85, 10-19. https://doi.org/10.1016/j.ijrmms.2016.02.010.
  • 36. Yoshinaka, R., Osada, M., Park, H., Sasaki, T., & Sasaki, K. (2008). Practical determination of mechanical design parameters of intact rock considering scale effect. Engineering Geology, 96(3-4), 173-186. https://doi.org/10.1016/j.enggeo.2007.10.008.
  • 37. Yu, Ch, Ji, S., & Li, Q. (2016). Effects of porosity on seismic velocities, elastic moduli and Poisson's ratios of solid materials and rocks. Journal of Rock Mechanics and Geotechnical Engineering, 8(1), 35-49. https://doi.org/10.1016/j.jrmge.2015.07.004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b27a106-1b62-409f-903c-cd614f751b04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.