Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Simple pretreatmentof raw chicken manureby cold and hot water extractionincreased the crucial for fermentation C:N ratio 2 to 2.7-fold. The pretreated chicken manure thus became suitable for methane fermentation as monosubstrate, this is due to higher C:N ratio. Cumulative methane and biogas production after pretreatment increasedabout 18–40% and 16–45%, respectively.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
79--84
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
autor
- The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences, Physical Aspects of Ecoenergy Department, Fiszera 14 Street, 80-231 Gdansk, Poland
autor
- The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences, Physical Aspects of Ecoenergy Department, Fiszera 14 Street, 80-231 Gdansk, Poland
autor
- The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences, Physical Aspects of Ecoenergy Department, Fiszera 14 Street, 80-231 Gdansk, Poland
Bibliografia
- 1. Abouelenien, F., Namba, Y., Kosseva, M.R., Nishio, N., & Nakashimada, Y. (2014). Enhancement of methane production from co-digestion of chicken manure with agricultural wastes. Bioresource Technology, 159, 80–87. DOI: 10.1016/j.biortech.2014.02.050.
- 2. Amanullah, M.M., Sekar, S., & Muthukrishnan, P. (2010). Prospects and potential of poultry manure. Asian Journal of Plant Sciences, 9(4), 172–182. DOI: 10.3923/ajps.2010.172.182.
- 3. Bayrakdar, A., Molaey, R., Sürmeli, R.Ö., Sahinkaya, E., & Çalli, B. (2017). Biogas production from chicken manure: Co-digestion with spent poppy straw. International Biodeterioration and Biodegradation, 119, 205–210. DOI: 10.1016/j.ibiod.2016.10.058.
- 4. Gelegenis, J., Georgakakis, D., Angelidaki, I., & Mavris, V. (2007). Optimization of biogas production by co-digesting whey with diluted poultry manure. Renewable Energy, 32(13), 2147–2160. DOI: 10.1016/j.renene.2006.11.015.
- 5. Myszograj, S., & Puchalska, E. (2012). Waste from rearing and slaughter of poultry — treat to the environment or feedstock for energy. Environmental Medicine, 15(3), 106–115.
- 6. Nahm, K.H. (2005). Factors influencing nitrogen mineralization during poultry litter composting and calculations for available nitrogen. World’s Poultry Science Journal, 61(2), 238–255. DOI: 10.1079/WPS200455.
- 7. Rahman, M.A., Møller, H.B., Saha, C.K., Alam, M.M., Wahid, R., & Feng, L. (2017). Optimal ratio for anaerobic co-digestion of poultry droppings and lignocellulosic-rich substrates for enhanced biogas production. Energy for Sustainable Development, 39, 59–66. DOI: 10.1016/j.esd.2017.04.004.
- 8. Rajagopal, R., Massé, D.I., & Singh, G. (2013). A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 143, 632–641. DOI: 10.1016/j.biortech.2013.06.030.
- 9. Sun, C., Cao, W., Banks, C.J., Heaven, S., & Liu, R. (2016). Biogas production from undiluted chicken manure and maize silage: A study of ammonia inhibition in high solids anaerobic digestion. Bioresource Technology, 218, 1215–1223. DOI: 10.1016/j.biortech.2016.07.082.
- 10. Wang, X., Yang, G., Feng, Y., Ren, G., & Han, X. (2012). Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresource Technology, 120, 78–83. DOI: 10.1016/j.biortech.2012.06.058.
- 11. Yenigün, O., & Demirel, B. (2013). Ammonia inhibition in anaerobic digestion: A review. Process Biochemistry, 48(5–6), 901–911. DOI: 10.1016/j.procbio.2013.04.012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b26af15-d52a-45a1-a29e-4c7352df4267