PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of imaging properties of novel contrast agents based on gold, silver and bismuth nanoparticles in spectral computed tomography using Monte Carlo simulation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, some imaging properties of nanoparticles-based contrast agents including gold, bismuth, and silver were assessed and compared with conventional (iodinated) contrast agent in spectral computed tomography (CT). A spectral CT scanner with photon-counting detectors (PCD) and 6 energy bins was simulated using the Monte Carlo (MC) simulation method. The nanoparticles were designed with a diameter of 50 nm at concentrations of 2, 4, and 8 mg/ml. Water-filled cylindrical phantom was modeled with a diameter of 10 cm containing a hole with a diameter of 5 cm in its center, where was filled with contrast agents. The MC results were used to reconstruct images. Image reconstruction was accomplished with the filtered back-projection (FBP) method with hamming filter and linear interpolation method. CT number and contrast-to-noise ratio (CNR) of all studied contrast materials were calculated in spectral images. The simulations indicated that nanoparticle-based contrast agents have a higher CT number and CNR than the iodinated contrast agent at the same concentration and for all energy bins. In general, gold nanoparticles produced the highest CT number and CNR compared to silver and bismuth nanoparticles at the same concentration. However, at low energies (below 80 keV), silver nanoparticles performed similarly to gold nanoparticles and at high energies (120 keV), bismuth nanoparticles can be a good substitute for gold nanoparticles.
Rocznik
Strony
21--29
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Tabriz
  • Medical Physics Department, Medical School, Tabriz University of Medical Sciences, Tabriz
  • Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Tabriz
  • Medical Physics Department, Medical School, Tabriz University of Medical Sciences, Tabriz
  • Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz
Bibliografia
  • [1] Kavousi z, Karimian A, Jabbari I. Assessment of X-Ray Crosstalk in a Computed Tomography Scanner with Small Detector Elements Using Monte Carlo Method. Iranian j Med Phys. 2018;15(3):169-175.
  • [2] Ashton JR, West JL, Badea CT. In vivo small animal micro-CT using nanoparticle contrast agents. Front Pharmacol. 2015;6:256.
  • [3] Mesbahi A, Famouri F, Ahar MJ, et al. A study on the imaging characteristics of Gold nanoparticles as a contrast agent in X-ray computed tomography. Pol J Med Phys Eng. 2017;23(1):9-14.
  • [4] Lee S, Choi YN, Kim HJ. Quantitative material decomposition using spectral computed tomography with an energy-resolved photoncounting detector. Phys Med Biol. 2014;59(18):5457-5482.
  • [5] van Ommen F, Bennink E, Vlassenbroek A, et al. Image quality of conventional images of dual-layer SPECTRAL CT: A phantom study. Med Phys. 2018;45(7):3031-3042.
  • [6] Kang S, Eom J, Kim B, Lee S. Evaluation of gold K-edge imaging using spectral computed tomography with a photon-counting detector: A Monte Carlo simulation study. Optik. 2017;140:253-260.
  • [7] Kim J, Bar-Ness D, Si-Mohamed S, et al. Assessment of candidate elements for development of spectral photon-counting CT specific contrast agents. Sci Rep. 2018;8(1):12119.
  • [8] Badea CT, Clark DP, Holbrook M, et al. Functional imaging of tumor vasculature using iodine and gadolinium-based nanoparticle contrast agents: a comparison of spectral micro-CT using energy integrating and photon counting detectors. Phys Med Biol. 2019;64(6):065007.
  • [9] Si-Mohamed S, Bar-Ness D, Sigovan M, et al. Multicolour imaging with spectral photon-counting CT: a phantom study. Eur Radiol Exp. 2018;2(1):34.
  • [10] Tao S, Rajendran K, McCollough CH, Leng S. Feasibility of multi‐contrast imaging on dual‐source photon counting detector (PCD) CT: An initial phantom study. Medical Physics. 2019;46(9):4105-4115.
  • [11] Lu G, Marsh S, Damet J, et al. Dosimetry in MARS spectral CT: TOPAS Monte Carlo simulations and ion chamber measurements. Australas Phys Eng Sci Med. 2017;40(2):297-303.
  • [12] Jo BD, Park SJ, Kim HM, et al. Spectral computed tomography for quantitative decomposition of vulnerable plaques using a dualenergy technique: a Monte Carlo simulation study. Journal of Instrumentation. 2016;11(02):P02011.
  • [13] Karunamuni R, Tsourkas A, Maidment AD. Exploring silver as a contrast agent for contrast-enhanced dual-energy X-ray breast imaging. Br J Radiol. 2014;87(1041):20140081.
  • [14] Sun IC, Eun DK, Na JH, et al. Heparin-coated gold nanoparticles for liver-specific CT imaging. Chemistry. 2009;15(48):13341-13347.
  • [15] Shilo M, Reuveni T, Motiei M, Popovtzer R. Nanoparticles as computed tomography contrast agents: Current status and future perspectives. Nanomedicine (London, England). 2012;7:257-269.
  • [16] Cole LE, Ross RD, Tilley JM, er al. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine (London, England). 2015;10(2):321-341.
  • [17] Jackson P, Geso M. Gold Nanoparticles as Contrast Media in Dual-energy Radiography: a Monte Carlo Study. Technical Proceedings of the 2010 NSTI Nanotechnology Conference & Expo - Nanotech 2010. Vol 3. pp. 77-80.
  • [18] Hoseinnezhad M, Mahdavi M, Mahdavi SRM, Mahdavizade M. An investigation of the effect of gold nanoparticles with different concentrations on increasing absorbed dose: an empirical and simulation study. J Radioth Practice. 2018;18(2):191-197.
  • [19] Rathnayake S, Mongan J, Torres AS, et al. In vivo comparison of tantalum, tungsten, and bismuth enteric contrast agents to complement intravenous iodine for double-contrast dual-energy CT of the bowel. Contrast Media Mol Imaging. 2016;11(4):254-261.
  • [20] Ghadiri H, Ay MR, Shiran MB, et al. K-edge ratio method for identification of multiple nanoparticulate contrast agents by spectral CT imaging. Br J Radiol. 2013;86(1029):20130308.
  • [21] Cormode DP, Fayad ZA. Nanoparticle contrast agents for CT: Their potential and the challenges that lie ahead. Imaging in Medicine. 2011;3(3):263-266.
  • [22] Hayati H, Mesbahi A. Impact of photon spectra on the sensitivity of polymer gel dosimetry by X-ray computed tomography. Iranian J Med Phys. 2019;16(1):48-55.
  • [23] Remy C, Lalonde A, Béliveau-Nadeau D, et al. Dosimetric impact of dual-energy CT tissue segmentation for low-energy prostate brachytherapy: a Monte Carlo study. Phys Med Biol. 2018;63(2):025013.
  • [24] Lalonde A, Simard M, Remy C, et al. The impact of dual- and multi-energy CT on proton pencil beam range uncertainties: a Monte Carlo study. Phys Med Biol. 2018;63(19):195012.
  • [25] Eom J, Kim B, Kim W, Lee S. Evaluation of material decomposition for pulmonary function test in spectral computed tomography: A Monte Carlo simulation study. Optik. 2018;174:409-415.
  • [26] Ehn S, Sellerer T, Mechlem K, et al. Basis material decomposition in spectral CT using a semi-empirical, polychromatic adaption of the Beer-Lambert model. Phys Med Biol. 2017;62(1):N1-N17.
  • [27] Hayati H, Mesbahi A, Nazarpoor M. Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes. Radiol Phys Technol. 2016;9(1):37-43.
  • [28] Nasirudin R, Penchev P, Mei K, et al. A Monte Carlo software bench for simulation of spectral k-edge CT imaging: Initial results. Physica Medica. 2015;31(4):398-405.
  • [29] Pelowitz DB: MCNPX user's manual version (2.6.0).; Los Alamos National Laboratory. 2008.
  • [30] Jo B, Im HS, Kim HJ, Son TJ. The potential of spectral-CT for material decomposition with gold-nanoparticle and iodine contrast. IFMBE Proceeding. 2015;51:22-25.
  • [31] Jakhmola A, Anton N, Vandamme T. Inorganic Nanoparticles Based Contrast Agents for X-ray Computed Tomography. Adv Healthc Mater. 2012;1(4):413-431.
  • [32] Brown AL, Naha PC, Benavides-Montes V, et al. Synthesis, X-ray Opacity, and Biological Compatibility of Ultra-High Payload Elemental Bismuth Nanoparticle X-ray Contrast Agents. Chemistry Mater. 2014;26(7):2266-2274.
  • [33] Hainfeld JF, O'Connor MJ, Dilmanian FA, et al. Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions. Brit J Radiol. 2011;84(1002):526-533.
  • [34] Chuang Y-C, Hsia Y, Chu C-H, et al. Precision control of the large-scale green synthesis of biodegradable gold nanodandelions as potential radiotheranostics. Biomaterials Science. 2019;7(11):4720-4729.
  • [35] Li C-H, Kuo T, Su H-J, et al. Fluorescence-Guided Probes of Aptamer-Targeted Gold Nanoparticles with Computed Tomography Imaging Accesses for in Vivo Tumor Resection. Scientific Reports. 2015;5:15675.
  • [36] Dong YC, Hajfathalian M, Maidment PSN, et al. Effect of Gold Nanoparticle Size on Their Properties as Contrast Agents for Computed Tomography. Scientific Reports. 2019;9(1):14912.
  • [37] Algethami M, Blencowe A, Feltis B, Geso M. Bismuth Sulfide Nanoparticles as a Complement to Traditional Iodinated Contrast Agents at Various X-Ray Computed Tomography Tube Potentials. J Nanomater Mol Nanotechnol. 2017;6(4).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b25aa78-1a64-4204-8676-18dc414071eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.