PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gene selection from large-scale gene expression data based on fuzzy interactive multi-objective binary optimization for medical diagnosis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An efficient fuzzy interactive multi-objective optimization method is proposed to select the sub-optimal subset of genes from large-scale gene expression data. It is based on the binary particle swarm optimization (BPSO) algorithm tuned by a chaotic method. The proposed method is able to select the sub-optimal subset of genes with the least number of features that can accurately distinguish between the two classes, e.g. the normal and cancerous samples. The proposed method is evaluated on several publicly available microarray and RNA-sequencing gene expression datasets such as leukemia, colon cancer, central nervous system, lung cancer, ovarian cancer, prostate cancer and RNA-seq lung disease. The results indicate that the proposed method can identify the minimum number of genes to achieve the most accuracy, sensitivity and specificity in the classification process. Achieving 100% accuracy in six out of the seven datasets investigated in this study, demonstrates the high capacity of the proposed algorithm to find the sub-optimal subset of genes. This approach is useful in clinical applications to extract the most influential genes on a disease and to find the treatment procedure for the disease.
Twórcy
autor
  • Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
autor
  • Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
  • Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
autor
  • Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
Bibliografia
  • [1] Li M, Chen W, Zhang T. Automatic epilepsy detection using wavelet-based nonlinear analysis and optimized SVM. Biocybernet Biomed Eng 2016;36:708–18.
  • [2] Vanitha CDA, Devaraj D, Venkatesulu M. Gene expression data classification using support vector machine and mutual information-based gene selection. Proc Comput Sci 2015;47:13–21.
  • [3] Wu JS, Zhou ZhH. Sequence-based prediction of microRNA-binding residues in proteins using cost-sensitive Laplacian support vector machines. IEEE-ACM Trans Comput Biol Bioinformat 2013;10:752–9.
  • [4] Duan KB, Rajapakse JC, Wang H, Azuaje F. Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Trans Nanobiosci 2005;4:228–34.
  • [5] Parry RM, Jones W, Stokes TH, Phan JH, Moffitt RA, Fang H, et al. K-nearest neighbor models for microarray gene expression analysis and clinical outcome prediction. Pharmacogenom J 2010;10:292–309.
  • [6] Baldi P, Long AD. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 2001;17:509–19.
  • [7] Raymer ML, Doom TE, Kuhn LA, Punch WF. Knowledge discovery in medical and biological datasets using a hybrid Bayes classifier/evolutionary algorithm. IEEE-ACM Trans Comput Biol Bioinformat 2003;33:802–13.
  • [8] Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007;23: 2507–17.
  • [9] Latkowski T, Osowski S. Data mining for feature selection in gene expression autism data. Expert Syst Appl 2015;42:864–72.
  • [10] Wang L, Han BL. Hybrid feature selection method for gene expression analysis. Electron Lett 2014;50:1269–71.
  • [11] Li X, Yin M. Multiobjective binary biogeography based optimization for feature selection using gene expression data. IEEE Trans Nanobiosci 2013;12:343–53.
  • [12] Maulik U, Mukhopadhyay A, Chakraborty D. Gene-expression-based cancer subtypes prediction through feature selection and transductive SVM. IEEE Trans Biomed Eng 2013;60:1111–7.
  • [13] Mitra S, Ghosh S. Feature selection and clustering of gene expression profiles using biological knowledge. IEEE Trans Sys Man Cybernet Part C Appl Rev 2012;42:1590–9.
  • [14] González-Navarro FF, Belanche-Muñoz LA. Feature selection for microarray gene expression data using simulated annealing guided by the multivariate joint entropy. Computación y Sistemas 2014;18:275–93.
  • [15] Wang C, Cao L, Miao B. Optimal feature selection for sparse linear discriminant analysis and its applications in gene expression data. Comput Stat Data Anal 2013;66: 140–9.
  • [16] Cui Y, Zheng ChH, Yang J, Sha W. Sparse maximum margin discriminant analysis for feature extraction and gene selection on gene expression data. Comput Biol Med 2013;43:933–41.
  • [17] Sharma A, Imoto S, Miyano S, Sharma V. Null space based feature selection method for gene expression data. Int J Mach Learn Cybernet 2012;3:269–76.
  • [18] Sharma A, Imoto S, Miyano S. A top-r feature selection algorithm for microarray gene expression data. IEEE-ACM Trans Comput Biol Bioinformat 2012;9:754–64.
  • [19] Chandra B, Gupta M. an efficient statistical feature selection approach for classification of gene expression data. J Biomed Inform 2011;44:529–35.
  • [20] Chiang JH, Ho SH. A combination of rough-based feature selection and RBF neural network for classification using gene expression data. IEEE Trans Nanobiosci 2008;7:91–9.
  • [21] Lee YJ, Chang ChCh, Chao ChH. Incremental forward feature selection with application to microarray gene expression data. J Biopharm Stat 2008;18:827–40.
  • [22] Li Y, Wang G, Chen H, Shi L, Qin L. An ant colony optimization based dimension reduction method for high-dimensional datasets. J Bionic Eng 2013;10:231–41.
  • [23] Chen Zh, Li J, Wei L. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue. Artif Intell Med 2007;41:161–75.
  • [24] Liu B, Cui Q, Jiang T, Ma S. A combinational feature selection and ensemble neural network method for classification of gene expression data. BMC Bioinformatics 2004;5.
  • [25] Han F, Yang C, Wu Y-Q, Zhu J-S, Ling Q-H, Song Y-Q, et al. A gene selection method for microarray data based on binary PSO encoding gene-to-class sensitivity information. IEEE/ACM Trans Comput Biol Bioinformat 2017;14: 85–96.
  • [26] Mandal M, Mondal J, Mukhopadhyay A. A PSO-based approach for pathway marker identification from gene expression data. IEEE Trans Nanobiosci 2015;14: 591–7.
  • [27] Sarkar A, Maulik U. Rough based symmetrical clustering for gene expression profile analysis. IEEE Trans Nanobiosci 2015;14:360–7.
  • [28] Nguyen T, Nahavandi S. Modified AHP for gene selection and cancer classification using type-2 fuzzy logic. IEEE Trans Fuzzy Syst 2016;24:273–87.
  • [29] Kar S, Sharma KD, Maitra M. Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive k-nearest neighborhood technique. Expert Syst Appl 2015;42: 612–27.
  • [30] Nguyen T, Khosravi A, Creighton D, Nahavandi S. Hierarchical gene selection and genetic fuzzy system for cancer microarray data classification. PLOS ONE 2015;10: e0120364.
  • [31] Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A. Distributed feature selection: an application to microarray data classification. Appl Soft Comput 2015;30:136–50.
  • [32] Mollaee M, Moattar MH. A novel feature extraction approach based on ensemble feature selection and modified discriminant independent component analysis for microarray data classification. Biocybernet Biomed Eng 2016;36:521–9.
  • [33] Kennedy J, Eberhart RC. A discrete binary version of the particle swarm algorithm. Proc. of the Conference on Systems, Man, and Cybernetics SMC97. 1997. pp. 4104–8.
  • [34] Tasgetiren MF, Liang YC. A binary particle swarm optimization algorithm for lot sizing problem. J Econ Soc Res 2003;5:1–20.
  • [35] Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999;286:531–7.
  • [36] Notterman DA, Alon U, Sierk AJ, Levine AJ. Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res 2001;61: 3124–30.
  • [37] Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002;415:436–42.
  • [38] Gordon GJ, Jensen RV, Hsiao LL, Gullans SR, Blumenstock JE, Ramaswamy S, et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res 2002;62:4963–7.
  • [39] Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002;359:572–7.
  • [40] Maruyama R, Toyooka S, Toyooka KO, Virmani AK, Zochbauer-Muller S, Farinas AJ, et al. Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin Cancer Res 2002;8: 514–9.
  • [41] Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T, et al. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res 2012;22:2109–19.
  • [42] Ruiz R, Riquelme JC, Aguilar-Ruiz JS. Incremental wrapper- based gene selection from microarray data for cancer classification. Pattern Recogn 2006;39:2383–92.
  • [43] Wang Y, Tetko IV, Hall MA, Frank E, Facius A, Mayer KFX, et al. Gene selection from microarray data for cancer classification – a machine learning approach. Comput Biol Chem 2005;29:37–46.
  • [44] Wang A, An N, Chen G, Li L, Alterovitz G. Improving PLS-RFE based gene selection for microarray data classification. Comput Biol Med 2015;62:14–24.
  • [45] Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 2005;21:631–43.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b225cd8-84d6-4f9a-a965-880b8e1bff9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.