Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider the l-th order linear fractional differential equations with constant coefficients. Here l ∈ ℕ is the ceiling for the highest derivative of order α, l − 1 < α ≤ l. If βi < α are the other derivatives, the existing theory requires α − max{βi} ≥ l − 1 for the existence of l linearly independent solutions. Thus, at most one derivative may have order greater than one, but all other derivatives must be between zero and one. We remove this essential restriction and construct l linearly independent solutions. With this aim, we remodel the series approaches and elaborate the multi-sum fractional series method in order to obtain the existence and linear independence results.We consider both Riemann-Liouville or Caputo fractional derivatives.
Wydawca
Czasopismo
Rocznik
Tom
Strony
117--128
Opis fizyczny
Bibliogr. 23 poz., wykr.
Twórcy
autor
- Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
autor
- Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
Bibliografia
- [1] A. Babakhani and V. Daftardar-Gejji, Existence of positive solutions of nonlinear fractional differential equations, J. Math. Anal. Appl. 278 (2003), no. 2, 434-442.
- [2] V. Daftardar-Gejji and A. Babakhani, Analysis of a system of fractional differential equations, J. Math. Anal. Appl. 293 (2004), no. 2, 511-522.
- [3] V. Daftardar-Gejji and H. Jafari, Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives, J. Math. Anal. Appl. 328 (2007), no. 2, 1026-1033.
- [4] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci. 54 (2003), 3413-3442.
- [5] K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), no. 2, 229-248.
- [6] P. B. Dubovski and J. A. Slepoi, Dual approach as empirical reliability for fractional differential equations, J. Phys. Conf. Ser. 2009 (2021), DOI 10.1088/174206596/2099/1/012004.
- [7] P. B. Dubovski and J. A. Slepoi, Analysis of solutions of some multi-term fractional Bessel equations, Fract. Calc. Appl. Anal. 24 (2021), no. 5, 1380-1408.
- [8] M. Edelman and A. B. Helman, Asymptotic cycles in fractional maps of arbitrary positive orders, Fract. Calc. Appl. Anal. 25 (2022), no. 1, 181-206.
- [9] X. Feng and M. Sutton, On a new class of fractional calculus of variations and related fractional differential equations, Differential Integral Equations 35 (2022), no. 5-6, 299-338.
- [10] R. Gorenflo and F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, in: Fractals and Fractional Calculus in Continuum Mechanics (Udine 1996), CISM Courses and Lect. 378, Springer, Vienna (1997), 223-276.
- [11] S. Khalaf, Analytic solution of linear fractional differential equations with constant coefficient, Math. Theory Model. 6 (2016), no. 2, 135-154.
- [12] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier Science, Amsterdam, 2006.
- [13] A. A. Kilbas and N. V. Zhukovskaya, Euler-type non-homogeneous differential equations with three Liouville fractional derivatives, Fract. Calc. Appl. Anal. 12 (2009), no. 2, 205-234.
- [14] L. Lafleche, Fractional Fokker-Planck equation with general confinement force, SIAM J. Math. Anal. 52 (2020), no. 1, 164-196.
- [15] I. P. Leskovski˘ı, On the theory of fractional differentiation, Differ. Equ. 13 (1977), 118-120.
- [16] L. Li and J.-G. Liu, A generalized definition of Caputo derivatives and its application to fractional ODEs, SIAM J. Math. Anal. 50 (2018), no. 3, 2867-2900.
- [17] W. Okrasiński and L. Płociniczak, A note on fractional Bessel equation and its asymptotics, Fract. Calc. Appl. Anal. 16 (2013), no. 3, 559-572.
- [18] M. D. Ortigueira, A simple approach to the particular solution of constant coefficient ordinary differential equations, Appl. Math. Comput. 232 (2014), 254-260.
- [19] M. D. Ortigueira, On the particular solution of constant coefficient fractional differential equations, Appl. Math. Comput. 245 (2014), 255-260.
- [20] M. M. Rodrigues, N. Vieira and S. Yakubovich, Operational calculus for Bessel’s fractional equation, in: Advances in Harmonic Analysis and Operator Theory, Oper. Theory Adv. Appl. 229, Birkhäuser/Springer, Basel (2013), 357-370.
- [21] V. E. Tarasov, Toward lattice fractional vector calculus, J. Phys. A 47 (2014), no. 35, Article ID 355204.
- [22] C. Yu and G. Gao, Existence of fractional differential equations, J. Math. Anal. Appl. 310 (2005), no. 1, 26-29.
- [23] N. V. Zhukovskaya and A. A. Kilbas, Solution of homogeneous fractional-order differential equations of Euler type, Differ. Equ 47 (2011), no. 12, 1714-1725.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b21915e-d0d3-403c-b11b-78dc65255083
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.