Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
According to the classical theory of Weiss, Landau, and Lifshitz, in a ferromagnetic body there is a spontaneous magnetization field m, such that ∥m∥ = τ0 = const in all points of this material Ω. In any stationary configuration, this ferromagnetic body consists of areas (Weiss domains) in which the magnetization is uniform (i.e. m = const) separated by thin transition layers (Bloch walls). Such stationary configuration corresponds to the minimum point of the magnetostrictive free energy E. We are considering an elastic magnetostrictive body in our paper. The elastic magnetostrictive free energy Eδ depends on a small parameter δ such that δ → 0. As usual, the displacement field is denoted by u. We will show that each sequence of minimizers (ui,mi) contains a subsequence that converges to a couple of fields (u0,m0). By means of a Γ-limit procedure we will show that this couple (u0,m0) is a minimizer of the new functional E0. This new functional E0 describes the magnetic-elastic properties of the body with microstructure.
Czasopismo
Rocznik
Tom
Strony
751--759
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw, Poland
autor
- Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw, Poland
Bibliografia
- [1] Shu, Y.C., Lin, M.P. andWu, K.C.: Micromagnetic modeling of magnetostrictive materials under intrinsic stress, Mechanics of materials, 36, 10, 975-997, 2004.
- [2] Anzellotti, G., Baldo, S. and Visintin, A.: Asymptotic behavior of the Landau-Lifshitz model of ferromagnetism, Applied Mathematics and Optimization, 23, 1, 171-192, 1991.
- [3] Alber, H.D.: A sharp interface model for phase transformations in crystals-instability caused by microstructure-simulations, Open seminar on partial differentia equations. Warsaw University of Technology, Faculty of Mathematics and Information Sciences, May 17, 2018.
- [4] Giusti, E.: Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984.
- [5] Leoni, G.: A First Course in Sobolev Spaces. Graduate Studies in Mathematics, vol. 105, American Mathematical Society, Providence, Rhode Island, 2009.
- [6] Adams, R.: Sobolev Spaces, Academic Press, New York, San Francisco, London, 1975.
- [7] Rockafellar, R.T.: Integral functionals, normal integrands and measurable selections, in: Nonlinear Operators and the Calculus of Variations. Lect. Notes Math., 543, Springer, Berlin 1975, 157-207.
- [8] Ekeland, I., Temam, R.: Convex Analysis and Variational Problems, North-Holland, Amsterdam and New York, 1976.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b1fe9dc-91a2-4584-bad5-15984ae50e98