PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrogen degradation of pre-oxidized zirconium alloys

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presence of the oxide layers on Zr alloys may retard or enhance the hydrogen entry and material degradation, depending on the layer features. This research has been aimed to determine the effects of pre-oxidation of the Zircaloy-2 alloy at a different temperature on hydrogen degradation. The specimens were oxidised in laboratory air at 350°C, 700°C, and 900°C. After, some samples were tensed at 10-5 strain rate and simultaneously charged with hydrogen under constant direct voltage in 1 N sulfuric acid at room temperature. Other specimens were charged without any tension, then annealed at 400°C for 4 h and finally tensed at above strain rate. The SEM examinations were performed on the cross-sections and fracture faces of specimens. The obtained results demonstrate the effects of the oxide layer on the cathodic current and hydrogen entry, mechanical properties and the appearance of hydrides and fracture behaviour.
Rocznik
Strony
5--21
Opis fizyczny
Bibliogr. 62 poz., rys., wykr., tab.
Twórcy
autor
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering and Bonding, 11/12 Narutowicza, 80-233 Gdańsk, Poland
autor
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering and Bonding, 11/12 Narutowicza, 80-233 Gdańsk, Poland
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering and Bonding, 11/12 Narutowicza, 80-233 Gdańsk, Poland
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering and Bonding, 11/12 Narutowicza, 80-233 Gdańsk, Poland
autor
  • Universite de Bordeaux, Institute de Mecanique et des Materiaux, 33000 Bordeaux, France
autor
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering and Bonding, 11/12 Narutowicza, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Steinbrück M., Böttcher M., Air oxidation of Zircaloy-4, M5_ and ZIRLO™ cladding alloys at high temperatures. J Nucl Mater 2011; 414:276-85.
  • 2. Zielinski A., Sobieszczyk S., Hydrogen-enhanced degradation and oxide effects in zirconium alloys for nuclear applications. Intl J Hydrogen Energy 2011;36:8619-29.
  • 3. Lelièvre G., Fruchart D., Convert P., Lefè`vre-Joud F., Characterisation by neutron diffraction in high temperature pressurized water of the surface corrosion and hydrogen embrittlement of zircaloy-4. J Alloys Comp 2002;347:288-94.
  • 4. Zeng C., Ling Y., Bai Y., Zhang R., Dai X., Chen Y., Hydrogen permeation characteristic of nanoscale passive films formed on different zirconium alloys. Intl J Hydrogen Energy 2016; 41:7676-90.
  • 5. Selmi N., Sari A., Study of Oxidation Kinetics in Air of Zircaloy-4 by in Situ X-Ray Diffraction. Adv Mater Phys Chem 2013;3:168-73.
  • 6. Baek J. H., Jeong Y. H., Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation. J Nucl Mater 2008;372:152-9.
  • 7. Allen T. R., Konings R. J. M., Motta A. T., Corrosion of Zirconium Alloys. In: Konings RJM, editor. Comprehensive Nuclear Materials, Amsterdam: Elsevier: 2012, vol. 5, p. 49-68.
  • 8. Gabory de B., Motta A. T., Wang K., Transmission electron microscopy characterization of Zircaloy-4 and ZIRLO™ oxide layers. J Nucl Mater 2015;456:272-80.
  • 9. Chen W., Wang L., Lu S., Influence of oxide layer on hydrogen desorption from zirconium hydride. J Alloys Comp 2009;469:142-5.
  • 10. Birchley J., Fernandez-Moguel L., Simulation of air oxidation during a reactor accident sequence: Part 1 - Phenomenology and model development. Ann Nucl Energy 2012;40:163-70.
  • 11. Hózer Z., Győri C., Matus L., Horvàth M., Ductile-to-brittle transition of oxidised Zircaloy-4 and E110 claddings. J Nucl Mater 2008;373:415-23.
  • 12. Elmoselhi M. B., Hydrogen uptake by oxidized zirconium alloys. J Alloys Comp 1995;231:716-21.
  • 13. Steinbrück M., Birchley J., Boldyrev A. V., Goryachev A. V., Grosse M., Haste T. J., et al., Hightemperature oxidation and quench behaviour of Zircaloy-4 and E110 cladding alloys. Progr Nucl Energy 2010;52:19-36.
  • 14. Fernandez-Moguel L., Birchley J., Simulation of air oxidation during a reactor accident sequence: Part 2 - Analysis of PARAMETER-SF4 air ingress experiment using RELAP5/SCDAPSIM. Ann Nucl Energy 2012;40:141-52.
  • 15. Coindreau O., Duriez Ch., Ederli S., Air oxidation of Zircaloy-4 in the 600-1000 C temperature range: modelling for ASTEC Code application. J Nucl Mater 2010;405:207-51.
  • 16. Kim J. H., Lee M. H., Choi B. K., Jeong Y. H., Effects of oxide and hydrogen on the circumferential mechanical properties of Zircaloy-4 cladding. Nucl Eng Design 2006;236:1867-73.
  • 17. Bertolino G., Meyer G., Perez Ipiña J., Degradation of the mechanical properties of Zircaloy-4 due to hydrogen embrittlement. J Alloys Comp 2002;330-332:408-13.
  • 18. Zielinski A., Degradation of some hydride-forming metals and their alloys. In: Goltsov VA. Editor. Progress in Hydrogen Treatment of Materials, Donetsk, Ukraina & Coral Gables, USA: Internal Association for Hydrogen Energy; 2001, 451-472.
  • 19. Steinbrück M., Hydrogen absorption by zirconium alloys at high temperatures. J Nucl Mater 2004;334:58-64.
  • 20. Shrivastava K. S., Kulkarni A. S., Ramanjaneyulu P. S., Sunil S., Saxena M. K., Singh R. N., et al., Determination of diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb pressure tube material using hot vacuum extraction-quadrupole mass spectrometry. J Nucl Mater 2015;461:151-6.
  • 21. Liu Y., Peng Q., Zhao W., Jiang H., Hydride precipitation by cathodic hydrogen charging method in zirconium alloys. Mater Chem Phys 2008;110:56-60.
  • 22. Lanzani L., Ruch M., Comments on the stability of zirconium hydride phases in Zircaloy. J Nucl Mater 2004;324:165-76.
  • 23. Daum R. S., Chu Y. S., Motta A. T., Identification and quantification of hydride phases in Zircaloy-4 cladding using synchrotron X-ray diffraction. J Nucl Mater 2009;392:453-63.
  • 24. Qin W., Szpunar J. A., Kozinski J., Hydride-induced degradation of hoop ductility in textured zirconium-alloy tubes: A theoretical analysis. Acta Mater 2012;60:4845-55.
  • 25. Blackmur M. S., Robson J. D., Preuss M., Zanellato O., Cernik R. J., Shi S-O., et al., Zirconium hydride precipitation kinetics in Zircaloy-4 observed with synchrotron X-ray diffraction. J Nucl Mater 2015;464:160-9.
  • 26. Le Saux M., Besson J., Carassou S., Poussard C., Averty X., Behavior and failure of uniformly hydrided Zircaloy-4 fuel claddings between 25°C and 480°C under various stress states, including RIA loading conditions. Eng Failure Analys 2010;17:683-700.
  • 27. Oh S., Jang C., Kim J. H., Jeong Y. H., Effect of Nb on hydride embrittlement of Zr-xNb alloys. Mater Sci Eng A 2010;527:1306-13.
  • 28. Yamanaka S., Setoyama D., Muta H., Uno M., Kuroda M., Takeda K., et al., Characteristics of zirconium hydrogen solid solution. J Alloys Comp 2004;372:129-35
  • 29. Hong S. I., Lee K. W., Kim K. T., Effect of the circumferential hydrides on the deformation and fracture of Zircaloy cladding tubes. J Nucl Mater 2002;303:169-76.
  • 30. Pierron O. N., Koss D. A., Motta A. T., Chan K. S., The influence of hydride blisters on the fracture of Zircaloy-4. J Nucl Mater 2003;322:21-35.
  • 31. Kim J. H., Lee M. H., Choi B. K., Jeong Y. H., Effect of the hydrogen contents on the circumferential mechanical properties of zirconium alloy claddings. J Alloys Comp 2007;431:155-61.
  • 32. Lee K. W., Hong S. I., Zirconium hydrides and their effect on the circumferential mechanical properties of Zr-Sn-Fe-Nb tubes. J Alloys Comp 2002;346:302-7.
  • 33. Min S-J., Kim M-S., Kim K-T., Cooling rate- and hydrogen content-dependent hydride reorientation and mechanical property degradation of Zr-Nb alloy claddings. J Nucl Mater 2013;441:306-14.
  • 34. Daunys M., Dundulis R., Grybenas A., Krasauskas P., Hydrogen influence on mechanical and fracture mechanics characteristics of zirconium Zr-2.5Nb alloy at ambient and elevated temperatures. Nucl Eng Design 2008;238:2536-45.
  • 35. Chakraborty P., Moitra A., Saha-Dasgupta T., Effect of hydrogen on degradation mechanism of zirconium: A molecular dynamics study. J Nucl Mater 2015;466:172-8.
  • 36. Huang J-H., Yeh M-S., Gaseous Hydrogen Embrittlement of a Hydrided Zirconium Alloy. Met Mater Trans A 1998;29:1047-56.
  • 37. Zhao C., Song X., Yang Y., Zhang B., Hydrogen absorption cracking of zirconium alloy in the application of nuclear industry. Intl J Hydrogen Energy 2013;38:10903-11.
  • 38. Bertolino G., Meyer G., Perez Ipiña J., Effects of hydrogen content and temperature on fracture toughness of Zircaloy-4. J Nucl Mater 2003;320:272-9.
  • 39. Pshenichnikov A., Stuckert J., Walter M., Hydride precipitation, fracture and plasticity mechanisms in pure zirconium and Zircaloy-4 at temperatures typical for the postulated loss-ofcoolant accident. Nucl Eng Design 2016;301:366-77.
  • 40. Udagawa Y., Yamaguchi M., Abe H., Sekimura N., Fuketa T., Ab initio study on plane defects in zirconium-hydrogen solid solution and zirconium hydride. Acta Mater 2010;58:3927-38.
  • 41. McRae G. A., Coleman C. E., Leitch B. W., The first step for delayed hydride cracking in zirconium alloys. J Nucl Mater 2010;396:130-43.
  • 42. Yamanaka S., Nishizaki T., Uno M., Katsura M., Hydrogen dissolution into zirconium oxide. J Alloys Comp 1999;293-295:38-41.
  • 43. Grosse M., Steinbrueck M., Lehmann E., Vontobel P., Kinetics of Hydrogen Absorption and Release in Zirconium Alloys During Steam Oxidation. Oxid Met 2008;70:149-162.
  • 44. Kiran Kumar M., Aggarwal S., Kain V., Saario T., Bojinov M., Effect of dissolved oxygen on oxidation and hydrogen pick up behaviour-Zircaloy vs Zr-Nb alloys. Nucl Eng Design 2010;240:985-94.
  • 45. Sundell G., Thuvander M., Andrén H-O., Barrier oxide chemistry and hydrogen pick-up mechanisms in zirconium alloys. Corr Sci 2016;102:490-502.
  • 46. Cha H-J., Jang K-N., An J-H., Kim K-T., The effect of hydrogen and oxygen contents on hydride reorientations of zirconium alloy cladding tubes. Nucl Eng Techn 2015;147:746-55.
  • 47. Große M., Lehmann E., Steinbrück M., Kühne G., Stuckert J., Influence of oxide layer morphology on hydrogen concentration in tin and niobium containing zirconium alloys after high temperature steam oxidation. J Nucl Mater 2009;385:339-45.
  • 48. Couet A., Motta A. T., Comstock R. J., Hydrogen pickup measurements in zirconium alloys: Relation to oxidation kinetics. J Nucl Mater 2014;451:1-13.
  • 49. Suman S., Khan M. K., Pathak M., Singh R. N., Chakravartty J. K., Hydrogen in Zircaloy: Mechanism and its impacts. Intl J Hydrogen Energy 2015;49:5976-94.
  • 50. Glazoff M. V., Tokuhiro A., Rashkeev S. N., Sabharwall P., Oxidation and hydrogen uptake in zirconium, Zircaloy-2 and Zircaloy-4: Computational thermodynamics and ab initio calculations. J Nucl Mater 2014;444:65-75.
  • 51. Gong W., Zhang H., Wu C., Tian H., Wang X., The role of alloying elements in the initiation of nanoscale porosity in oxide films formed on zirconium alloys. Corr Sci 2013;77:391-6.
  • 52. Neogy S., Srivastava D., Tewari R., Singh R. N., Dey G. K., Banerjee S., Microstructural study of hydride formation in Zr-1Nb alloy. J Nucl Mater 2003;322:195-203.
  • 53. Hsu H-H., An evaluation of hydrided Zircaloy-4 cladding fracture behavior by X-specimen test. J Alloys Comp 2006;426:256-62.
  • 54. Singh R. N., Kumar N., Kishore R., Roychaudhury S., Sinha T. K., Kashyap B. P., Delayed hydride cracking in Zr-2.5Nb pressure tube material. J Nucl Mater 2002;304:189-203.
  • 55. Mani Krishna K. V., Sain A., Samajdar I., Dey G. K., Srivastava D., Neogy S., et al., Resistance to hydride formation in zirconium: An emerging possibility. Acta Mater 2006;54:4665-75.
  • 56. Bind A. K., Singh R. N., Khandelwal H. K., Sunil S., Avinash G., Chakravartty J. K., et al., Influence of loading rate and hydrogen content on fracture toughness of Zr-2.5Nb pressure tube material. J Nucl Mater 2015;465:177-88.
  • 57. Viswanathan U. K., Singh R. N., Basak C. B., Anantharaman S., Sahoo K. C., Evaluation of the effect of hydrogen on the toughness of Zircaloy-2 by instrumented drop weight impact testing. J Nucl Mater 2006;350:310-9.
  • 58. Gou Y., Li Y., Liu Y., Chen H., Ying S., Evaluation of a delayed hydride cracking in Zr-2.5Nb CANDU and RBMK pressure tubes. Mater Design 2009;30:1231-5.
  • 59. Shavkunov S. P., Tolkachev A. B., Electrochemical Hydrogen Evolution at a Single-Crystal Zirconium Face in Sulfuric Acid Solutions. Russ J Electrochem 2002;38:714-9.
  • 60. Bertolino G., Meyer G., Perez Ipiña J., In situ crack growth observation and fracture toughness measurement of hydrogen charged Zircaloy-4. J Nucl Mater 2003;322:57-65.
  • 61. Szoka A., Gajowiec G., Serbinski W., Zielinski A., Effect of surface state and stress on an oxidation of the zircaloy-2 alloy. Intl J Manag Inform Techn Eng 2016;4:55-64.
  • 62. Siripurapu R. K., Szpunar B., Szpunar J. A., Molecular Dynamics Study of Hydrogen in α- Zirconium. Intl J Nucl Energy 2014; International Journal of Nuclear Energy 2014;2014: Article ID 912369, six pages.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b1ee4bf-a261-4cd9-8e9b-333eb41c29e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.