PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Composite GFRP u-shaped footbridge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents proposals for the use of glass fiber reinforced polymer composites for the construction of engineering objects, known and commonly used in the shipbuilding industry. An example of a pedestrian footbridge was used in this case, which, despite the considerable thickness of the structural material, was made using infusion technology in one production cycle. The designed and produced footbridge span is durable, dynamically resistant, incombustible, easy to install and maintain, resistant to weather conditions and also aesthetically interesting. For footbridge production environmentally friendly PET foam core may be used. It may come from recycling of used plastic packages and which is produced with less energy consumption process and much less CO2 emission. The load bearing part of the structure (skin) is made of polymer laminate reinforced with glass fabrics (GFRP).
Rocznik
Tom
S 1
Strony
25--31
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • Gdańsk University of Technology Faculty of Civil Engineering and Environment 11/12 Narutowicza St. 80 - 233 Gdańsk Poland
  • Gdańsk University of Technology Faculty of Civil Engineering and Environment 11/12 Narutowicza St. 80 - 233 Gdańsk Poland
  • Gdańsk University of Technology Faculty of Civil Engineering and Environment 11/12 Narutowicza St. 80 - 233 Gdańsk Poland
autor
  • Gdańsk University of Technology Faculty of Civil Engineering and Environment 11/12 Narutowicza St. 80 - 233 Gdańsk Poland
Bibliografia
  • 1. Ambroziak A., Kłosowski P.: Mechanical properties of polyvinyl chloride-coated fabric under cyclic tests. Journal Of Reinforced Plastics And Composites. Vol. 33, No. 3 (2014), pp. 225-234
  • 2. Ambroziak A., Kłosowski P.: Mechanical testing of technical woven fabrics. Journal Of Reinforced Plastics And Composites. Vol. 32, No. 10 (2013), pp. 726-739.
  • 3. Bobkowska K., Janowski A., Przyborski M., Szulwic J.: Analysis of High Resolution Clouds of Points as a Source of Biometric Data. 2016 Baltic Geodetic Congress (BGC Geomatics)/ : IEEE, 2016, pp.15-21
  • 4. Burdziakowski P., Janowski A., Kholodkov A., Matysik K., Matysik M., Przyborski M., Szulwic J., Tysiąc P., Wojtowicz A.: Maritime laser scanning as the source for spatial data. Polish Maritime Research, Vol. 22, No. 4(88) (2015), pp. 9-14.
  • 5. Burzyński S., Chróścielewski J., Witkowski W.: Geometrically nonlinear FEM analysis of 6-parameter resultant shell theory based on 2-D Cosserat constitutive model. ZAMM- Zeitschrift fuer Angewandte Mathematik und Mechanik, Vol. 96, No. 2 (2015), pp.191-204
  • 6. Chróścielewski J., Klasztorny M., Miśkiewicz M., Romanowski R., Wilde K.: Innovative design of GFRP sandwich footbridge, Proc. 5th International Conference on Footbridges: Past, Present & Future, Footbridge 2014, London, England, 16–18 July 2014, Paper #1250, pp. 1–8
  • 7. Chróścielewski J., Klasztorny M., Wilde K., Miśkiewicz M., Romanowski R.: Composite sandwich bridge for pedestrians and bicyclists ( in Polish), Materiały Budowlane 7/2014 (No. 503), pp. 1-2.
  • 8. Chróścielewski J., Miśkiewicz M., Pyrzowski Ł., Rucka M, Ferenc T.: Experimental tests of a validation segment of composite foot - bicycle bridge (in Polish). Materiały Budowlane 4/2015 (No. 512), pp. 72-73.
  • 9. Chróścielewski J., Miśkiewicz M., Pyrzowski Ł., Wilde K.: Tests of a composite footbridge ( in Polish). Mosty, 1/2016, pp. 44-49.
  • 10. Chróścielewski J., Miśkiewicz M., Wilde K. A composite foot - bicycle bridge. ( in Polish). II Konferencja NaukowoTechniczna Współczesne Materiały, Techniki i Technologie we Współczesnym Budownictwie ( 2nd Scientifical Technical Conference on Contemporary Materials, Techniques and Technologies in Today Building Industry), Cracow, 21÷23 -10-2015, pp. 67-74
  • 11. Chróścielewski J., Witkowski W.: Four-node semi-EAS element in six-field nonlinear theory of shells. International Journal for Numerical Methods In Engineering 68(11), 2006, pp. 1137-1179.
  • 12. Grelowska G., Kozaczka E., Nowicki A., Kozaczka S.: Investigation of Transmit and Receive Characteristics of Laboratory Model for the Parametric Echosounder. Acta Physica Polonica A., Vol. 123, No. 6 (2013), pp.1094-1097
  • 13. Iwicki P., Tejchman A., Chróścielewski J.: Dynamic FE simulations of buckling process in thin-walled cylindrical metal silos. Thin-Walled Structures. Vol. 84 (2014), pp.344-359.
  • 14. Jakubowski M.: Influence of pitting corrosion on fatigue and corrosion fatigue of ship and offshore structures. Part II: Load - pit crack interaction. Polish Maritime Research. -Vol. 22, No. 3 (2015), pp. 57-66.
  • 15. Klasztorny M., Bondyra, A., Szurgott, P., Nycz, D.: Numerical modelling of GFRP laminates with MSC. Marc system and experimental validation. Computational Materials Science, vol. 64, 2012, pp. 151-156. DOI: 10.1016/j. commatsci.2012.05.024
  • 16. Kaliński K.: The finite element method application to linear closed loop steady system vibration analysis. International Journal of Mechanical Sciences 39 (3), 1997, pp. 315–330.
  • 17. Łuczak M., Manzato S., Peeters B., Branner K., Berring P., Kahsin M.: Updating Finite Element Model of a Wind Turbine Blade Section Using Experimental Modal Analysis Results. Shock And Vibration, No. 1 (2014), pp. 71-82.
  • 18. Mikielewicz J., Mikielewicz D. : A simple model of circular hydraulic pump. International Journal of Heat and Mass Transfer, Vol. 52(1), (2008) pp.17-21,.
  • 19. Miśkiewicz M, Daszkiewicz K., Ferenc T. Witkowski W and Chróścielewski J.: Experimental tests and numerical simulations of full scale composite sandwich segment of a foot-and-cycle bridge. Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues – Kleiber et al. (Eds), Taylor & Francis Group, London, 2016, pp. 401-404.
  • 20. Miśkiewicz M., Okraszewska R., Pyrzowski Ł. : Composite footbridge – synergy effect in cooperation between universities and industry. ICERI2014: 7th International Conference of Education, Research and Innovation, ICERI Proceedings, (2014), pp. 2897-2903.
  • 21. Miśkiewicz M., Pyrzowski Ł., Chróścielewski J., Wilde K.: Structural Health Monitoring of Composite Shell Footbridge for Its Design Validation. Proceedings 2016 Baltic Geodetic Congress (Geomatics)/ ed. Juan E. Guerrero Los Alamitos: IEEE Computer Society Order Number E5972, 2016, pp. 228-233.
  • 22. Niklas K., Kozak J.: Experimental investigation of Steel– Concrete–Polymer composite barrier for the ship internal tank construction. Ocean Engineering. Vol. 111, (2016), pp. 449-460.
  • 23. Pyrzowski Ł., Sobczyk B., Witkowski W., Chróścielewski J.: Three-point bending test of sandwich beams supporting the GFRP footbridge design process validation. 3rd Polish Congress of Mechanics (PCM) / 21st International Conference on Computer Methods in Mechanics (CMM), 2016, Taylor & Francis Group, London, pp. 489-492.
  • 24. Sabik A., Kreja I.: Large thermo-elastic displacement and stability FEM analysis of multilayered plates and shells. Thin-Walled Structures 71, (2013), pp.119-133.
  • 25. Siemiątkowski M., Przybylski W. : Simulation studies of process flow with in-line part inspection in machining cells. Journal of Materials Processing Technology Volume 171, No. 1, January 10, 2006, pp. 27-34.
  • 26. Siwowski T., Kulpa M., Poneta P.: Research on application of FRP composites to bridge building in Poland ( in Polish). Materiały Budowlane 11/2014
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b1e6823-bbb1-45d4-aa33-9508bcc99986
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.