PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and mechanical properties of the Sanicro 25 steel after ageing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the research was to determine and analyse the changes in the microstructure and mechanical properties of the Sanicro 25 steel in the as-received condition and after ageing at 600, 650 and 700°C for up to 10,000 hours. Design/methodology/approach: The scope of the investigations included: microstructural investigation – SEM microscopy, analysis of precipitation performed using TEM microscopy, investigation of mechanical properties, Vickers hardness measurement. Findings: In the as-received condition, the Sanicro 25 steel was characterised by austenitic microstructure with annealing twins and numerous primary precipitates. The analysis of Sanicro 25 steel microstructure after ageing at 600 and 700°C for up to 10,000 hours revealed significant changes in the microstructure consisting mainly in a tendency to create unfavourable morphology of secondary precipitates – M23C6 carbides that form continuous carbide systems along the grain boundaries. The observations have shown that during long-term ageing the secondary carbides were also precipitated inside the grains and at the interface of three grain boundaries – σ phase. Research limitations/implications: The analysis of the microstructure of the examined steel using SEM and TEM was performed to determine the influence of ageing on the processes of changes in the precipitate morphology. Practical implications: The results obtained based on the performed research constitute a building block for the degradation characteristics of the microstructure and mechanical properties of the 23/25-type austenitic steels. Originality/value: The results of the investigation and analysis of the metallographic and mechanical properties of the Sanicro25 austenitic steel in as-received condition and after ageing are presented.
Rocznik
Strony
5--11
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Material Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Material Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Material Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
Bibliografia
  • [1] T. Chmielniak, Development of a technology for highly efficient “zero-emission” coal-fired units integrated with CO2 capture from flue gases: the concept and main findings, Energy Policy Journal 18/3 (2015) 75-86.
  • [2] A. Di Giafracesco, The fossil fuel power plants technology, in A. Di Giafracesco (Ed.), Materials for ultra-supercritical and advanced ultra-supercritical power plants, Woodhead Publishing, 2017, 1-49, DOI: https://do.org/10.1016/C2014-0-04826-5.
  • [3] J. Yan, Y. Gu. J. Lu, On precipitates in Fe-Ni base alloys used for USC boilers, Materials Science and Technology 31/4 (2015) 389-399, DOI: 10.1179/1743284714Y.0000000620.
  • [4] A. Zieliński, G. Golański, M. Sroka, J. Dobrzański, Estimation of long-term creep strength in austenitic power plant steel, Materials Science and Technology 32/8 (2015) 780-785, DOI: 10.1179/1743284715Y.0000000137.
  • [5] P. Jamrozik, M. Sozańska, Evaluation of the applicability of Sanicro 25 steel in supercritical boilers, Solid State Phenomena 212 (2014) 201-204, DOI: https://doi.org/10.4028/www.scientific.netSSP.212.201.
  • [6] G. Chai, U. Forsberg, Sanicro 25 high-strength, heat-resistant austenitic stainless steel, in A. Di Giafracesco (Ed.), Materials for ultra-supercritical and advanced ultra-supercritical power plants, Woodhead Publishing, 2017, 391-419, DOI: https://do.org/10.1016/C2014-0-04826-5.
  • [7] Sanicro 25. Tube and pipe. Seamless, Data Sheet, Sandvik, 207.
  • [8] A.Y. Chen, W.F. Hu, D. Wang, Y.K. Zhu, P. Wang, H. Yang, X.Y. Wang, J.F. Gu, J. Lu, Improving the intergranular corrosion resistance of austenitic stainless steel by high density twinned structure, Scripta Materialia 13 (2017) 264-268, DOI: https://doi.org/10.1016/j.scriptamat.2016.11.032.
  • [9] C.Z. Zhu, Y. Yuan, P Zhang, Yang, Y.L. Zhou, J.Y. Huang, H.F. Yin, Y.Y. Dang, X.B. Zhao, A modified HR3C austenite heat-resistant steel for ultra-supercritical power plants applications beyond 650°C, Metallurgical and Materials Transactions A 49/2 (2017) 434-438, DOI: 10.1007/s11661-017-4424-z.
  • [10] J. Erneman, M. Schwind, H.-O. Andrén, J.-O. Nilsson, A. Wilson, J. Ágren, The evolution of primary and secondary niobium carbonitrides in AISI 347 stainless steel during manufacturing and long-term ageing, Acta Materialia 54/1 (2006) 67-76, DOI: https://doi.org/10.1016/j.actamat.2005.08.028.
  • [11] G. Golański, A. Zieliński, H. Purzyńska, Precipitation processes in creep-resistant austenitic steel, in: W. Borek, T. Tański, Z. Brytan (Eds.), Austenitic stainless steel, InTech Open, 2017, 93-112, DOI: https://dx.doi.org/10.5772/intechopen.70941.
  • [12] T. Sourmail, Precipitation in creep resistant austenitic stainless steel, Materials Science and Technology 14/1 (2001) 1-14, DOI: https://doi.org/10.1179/026708301101508972.
  • [13] Ch-Y. Chia, H-Y. Yu, J-X. Dong, W-Q. Liu, S-CH. Cheng, Z-D. Liu, X-S. Xie, The precipitation strengthening behavior of Cu-rich chase in Nb contained advanced Fe-Cr-Ni type austenitic heat resistant steel for USC power plant application, Progress in Natural Science: Materials International 22/3 (2012) 175-185, DOI: https://doi.org/10.1016/.pnsc.2012.05.002.
  • [14] Y. Li, Y. Liu, Ch. Liu, Ch. Li, H. Li, Mechanism for the formation of Z-phase In 25Cr-20Ni-Nb-Naustenitic stainless steel, Materials Letters 233 (2018) 16-19, DOI: 10.1016/j.matlet.2018.08.141.
  • [15] R. Zhou, L. Zhu, Y. Liu, Z. Lu, L. Chen, Precipitates and Precipitation Strengthening of Sanicro 25 Welded Joint Base Metal Crept at 973 K, Steel Research International 88/8 (2017) 1600414, DOI: 10.1002/srin. 201600414
  • [16] A. Zieliński, M. Sroka, A. Hernas, M. Kremzer, The effect of long-term impact of elevated temperature on changes in microstructure and mechanical properties of HR3C steel, Archives of Metallurgy and Materials 61 (2016) 761-766, DOI: 10.1515/amm-2016-0129.
  • [17] A. Joarder, D.S. Sarma, N.S. Cheruvu, Effect of long-term service exposure on microstructure and mechanical properties of a CrMoV steam turbine rotor steel, Metallurgical Transactions A 22/8 (1991) 1811-1820, DOI: 10.1007BF02646505.
  • [18] T.D. Nguyen, K. Sawada, H. Kushima, M. Tabuchi, K. Kimura, Change of precipitation free zone during long-term creep In 2.25Cr-1Mo steel, Materials Science and Engineering A 591 (2014) 130-135, DOI: 10.2478/adms-2014-0016.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b1c8d50-e6d6-49a4-a5c7-5910ed433ade
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.