PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Material Production and the Effect of the System on Biocompatibility in the Modified Metal Injection Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the bio state of the alloy produced in the modified metal injection system was monitored after sintering. A new system operating with high gas pressure, far from the traditional injection model, has been established for material production. In this system, 316L stainless steel powders were molded using a PEG/PMMA/SA polymer recipe. During molding, approximately 60% 316L and 40% binder by volume were used. The samples obtained were sintered at different temperatures (1100-1300°C) after de-binding. Density measurement (Archimedes) and hardness tests (HV1) of the samples were measured as 6.74 g/cm3 and ~285 HV1, respectively. A potentiodynamic corrosion test was applied to monitor the effect of the amount of oxide in the structure of the 316L stainless steel produced. Corrosion tests were carried out in artificial body solutions. The corrosion rate was measured at the level of 17.08×10-3 mm/y. In terms of biocompatibility, a cytotoxicity test was applied to the samples and the life course of the bacteria was monitored. For the 316L alloys produced, the % vitality reached approximately 103%.
Twórcy
  • Hitit University, Vocational School of Technical Sciences, Machine and Metal Technologies Department, Corum, Turkey
autor
  • Karabuk University, Engineering Faculty, Turkey
Bibliografia
  • [1] R.M. German, Powder Metallurgy Science, 1984 Metal Powder Indust Feder, Wiley, USA.
  • [2] A. Salak, Ferrous Powder Metallurgy, Cambridge Int, 1995 Cambridge.
  • [3] S.C. Dhara, Sintering Characteristic of Precious Metal Powders, Particul. Sci. Technol. 11 (3-4), 207-227 (1993). DOI: https://doi.org/10.1080/02726359308906636
  • [4] R.M. German, Sintering Theory and Practice, 1996 Wiley, USA.
  • [5] R.M. German, Powder Injection Molding, 1990 Metal Powder Indust Feder, New Jersey, USA.
  • [6] R.M. German, K.F. Hens, S.-T.P. Lin, Key Issues in Powder Injection Molding, Am. Ceram. Soc. Bull. 70 (8), 1294-1302 (1991).
  • [7] T. Hartwig, G. Veltl, F. Petzoldt, H. Kunze, R. Scholl, B. Kieback, Powders for Metal Injection Molding, J. Eur. Ceram. Soc. 18 (9), 1211 (1998). DOI: https://doi.org/10.1016/S0955-2219(98)00044-2
  • [8] Z. Rak, New Trends in Powder Injection Moulding, Powder Metall. Met. C+ 38 (3-4), 126 (1998). DOI: https://doi.org/10.1007/BF02676037
  • [9] N. Kurgan, Y. Sun, B. Cicek, H. Ahlatci, Production of 316L Stainless Steel Implant Materials by Powder Metallurgy and Investigation of Their Wear Properties, Chin. Sci. Bull. 57 (15), 1873-1878 (2012). DOI: https://doi.org/10.1007/s11434-012-5022-5
  • [10] E. Salahinejad, M.J. Hadianfard, D.D. Macdonald, S. Sharifi-Asl, M. Mozafari, K.J. Walker, A.T. Rad, S.V. Madihally, L. Tayebi, In Vitro Electrochemical Corrosion and Cell Viability Studies on Nickel-Free Stainless Steel Orthopedic Implants, PLoS One 8 (4), e61633 (2013). DOI: https://doi.org/10.1371/journal.pone.0061633
  • [11] H. O. Gulsoy, S. Pazarlioglu, N. Gulsoy, B. Gundede, O. Mutlu, Effect of Zr, Nb and Ti Addition on Injection Molded 316l Stainless Steel for Bio-Applications: Mechanical, Electrochemical and Biocompatibility Properties, J. Mech. Behav. Biomed. Mater. 51, 215-224 (2015). DOI: https://doi.org/10.1016/j.jmbbm.2015.07.016
  • [12] O. Balyts’kyi, Corrosion-Mechanical Characteristics of the Materials of Nonmagnetic Retaining Rings of Turbogenerators. Ii. High-Nitrogen 18mn-18cr Steels., Mater. Sci. 34 (1), 97-109 (1998). DOI: https://doi.org/10.1007/BF02362618
  • [13] O. Balyts’kyi, O. Krokhmal’nyi, Pitting Corrosion of 12kh18ag18sh Steel in Chloride Solutions, Mater. Sci. 35 (3), 389-394 (1999). DOI: https://doi.org/10.1007/BF02355483
  • [14] N. Sezer, Z. Evis, S.M. Kayhan, A. Tahmasebifar, M. Koc, Review of Magnesium-Based Biomaterials and Their Applications, J. Magnes. Alloy. 23-36 (2018). DOI: https://doi.org/10.1016/j.jma.2018.02.003
  • [15] R.M. Pilliar, Metallic Biomaterials, in Biomedical Materials, 2021, Springer. p. 1-47.
  • [16] M. Schmidt, M. Goebeler, Nickel Allergies: Paying the Toll for Innate Immunity, J. Mol. Med. 89 (10), 961-970 (2011). DOI: https://doi.org/10.1007/s00109-011-0780-0
  • [17] Y. Zheng, X. Gu, F. Witte, Biodegradable Metals, Mater. Sci. Eng. R Rep. 77 1-34 (2014). DOI: https://doi.org/10.1016/j.mser.2014.01.001
  • [18] Q. Chen, G.A. Thouas, Metallic Implant Biomaterials, Mater. Sci. Eng. R Rep. 87 1-57 (2015). DOI: https://doi.org/10.1016/j.mser.2014.10.001
  • [19] F.O. Nestle, H. Speidel, M.O. Speidel, High Nickel Release from 1-and 2-Euro Coins, Nature 419 (6903), 132-132 (2002). DOI: https://doi.org/10.1038/419132a
  • [20] N. Kurgan, Effect of Porosity and Density on the Mechanical and Microstructural Properties of Sintered 316l Stainless Steel Implant Materials, Mater. Design 55, 235-241 (2014). DOI: https://doi.org/10.1016/j.matdes.2013.09.058
  • [21] Y.-W. Kim, T. Mukarati, Fabrication and Shape Memory Characteristics of Highly Porous Ti-Nb-Mo Biomaterials, Arch. Metall. Mater. 62 (2017). DOI: https://doi.org/10.1515/amm-2017-0210
  • [22] K.-K. Wang, B.-J. Kim, S.-J. Jung, J.-W. Hwang, Y.-R. Kim, Fabrication and Characterization of Antimicrobial Surface-Modified Stainless Steel for Bio-Application, Surf. Coat. Technol. 310, 256-262 (2017). DOI: https://doi.org/10.1016/j.surfcoat.2016.12.088
  • [23] C.V. Nayak, M. Ramesh, V. Desai, S.K. Samanta, Fabrication of Stainless Steel Based Composite by Metal Injection Moulding, Mater. Today 5 (2), 6805 (2018). DOI: https://doi.org/10.1016/j.matpr.2017.11.340
  • [24] R. German, Sintering: From Empirical Observations to Scientific Principles, 2014 Elsevier, United State of America.
  • [25] T. Senthilvelan, K. Raghukandan, A. Venkatraman, Testing and Quality Standards for Powder Metallurgy Products, Mater. Manuf. Process 18 (1), 105-112 (2003). DOI: https://doi.org/10.1081/AMP-120017592
  • [26] Y. Türen, Influence of Pressure Type on Powder Injection Moulding of Stainless Steel (316l) Powder, Hitite J. Sci. Eng. 4 (2), 85 (2017). DOI: https://doi.org/10.17350/HJSE19030000053
  • [27] B. Cicek, Y. Sun, Y. Turen, H. Ahlatci, Applicability of Different Powder and Polymer Recipes in a New Design Powder Injection Molding System, J. Polym. Eng. 41 (4), 299-309 (2021). DOI: https://doi.org/10.1515/polyeng-2020-0263
  • [28] B. Cicek, Y. Sun, Y. Turen, H. Ahlatci, Investigation of Microstructural Evolution of Gas-Assisted Metal Injection Molded and Sintered Mg-0.5 Ca Alloy, Sci. Sinter. 54 (1), 25-37 (2022). DOI: https://doi.org/10.2298/SOS2201025C
  • [29] T.Y. Chan, S.T. Lin, Effects of Stearic Acid on the Injection Molding of Alumina, J. Am. Ceram. Soc. 78 (10), 2746-2752 (1995). DOI: https://doi.org/10.1111/j.1151-2916.1995.tb08050.x
  • [30] H. Bakan, Y. Jumadi, P. Messer, H. Davies, B. Ellis, Study of Processing Parameters for Mim Feedstock Based on Composite Peg-Pmma Binder, Powder Metall. 41 (4), 289 (1998). DOI: https://doi.org/10.1179/pom.1998.41.4.289
  • [31] M. Omar, H. Davies, P. Messer, B. Ellis, The Influence of Pmma Content on the Properties of 316l Stainless Steel Mim Compact, J. Mater. Process Tech. 113 (1-3), 477 (2001). DOI: https://doi.org/10.1016/S0924-0136(01)00641-0
  • [32] D.-Y. Wi, Y.-K. Kim, T.-S. Yoon, K.-A. Lee, Microstructure and High Temperature Oxidation Properties of Fe-Cr-Ni Hk30 Alloy Manufactured by Metal Injection Molding, Arch. Metall. Mater. 64 (2019). DOI: https://doi.org/10.24425/amm.2019.127571
  • [33] A. Szewczyk-Nykiel, R. Bogucki, Sinter-Bonding of Aisi 316l and 17-4 Ph Stainless Steels, J. Mater. Eng. Perform. 27 (10), 5271-5279 (2018). DOI: https://doi.org/10.1007/s11665-018-3590-5
  • [34] J.-P. Choi, G.-Y. Lee, J.-I. Song, W.-S. Lee, J.-S. Lee, Sintering Behavior of 316l Stainless Steel Micro-Nanopowder Compact Fabricated by Powder Injection Molding, Powder Technol. 279, 196-202 (2015). DOI: https://doi.org/10.1016/j.powtec.2015.04.014
  • [35] P.N. Rao, D. Kunzru, Fabrication of Microchannels on Stainless Steel by Wet Chemical Etching, J. Micromech. Microeng. 17 (12), N99 (2007). DOI: https://doi.org/10.1088/0960-1317/17/12/N01
  • [36] E. Standard, ISO 6507-1: 2007. Metallic Materials. Vickers Hardness Test, in International Organization for Standardization, Geneva. 2007.
  • [37] H. Jia, X. Feng, Y. Yang, Effect of Grain Morphology on the Degradation Behavior of Mg-4 Wt% Zn Alloy in Hank’s Solution, Mater. Sci. Eng. C 106, 110013 (2020). DOI: https://doi.org/10.1016/j.msec.2019.110013
  • [38] J. Pytko-Polonczyk, A. Jakubik, A. Przeklasa-Bierowiec, B. Muszynska, Artificial Saliva and Its Use in Biological Experiments, J. Physiol. Pharmacol. 68 (6), 807-813 (2017).
  • [39] S.D. Cramer, B.S. Covino, Asm Handbook Vol. 13 a Corrosion: Fundamentals, Testing, and Protection, 2003 ASM International, Materials Park, OH.
  • [40] Z. Shi, M. Liu, A. Atrens, Measurement of the Corrosion Rate of Magnesium Alloys Using Tafel Extrapolation, Corros. Sci. 52 (2), 579-588 (2010). DOI: https://doi.org/10.1016/j.corsci.2009.10.016
  • [41] S. Cengiz, A. Uzunoglu, L. Stanciu, M. Tarakci, Y. Gencer, Direct Fabrication of Crystalline Hydroxyapatite Coating on Zirconium by Single-Step Plasma Electrolytic Oxidation Process, Surf. Coat. Technol. 301, 74-79 (2016). DOI: https://doi.org/10.1016/j.surfcoat.2015.12.069
  • [42] S. Cengiz, A. Uzunoglu, S. M. Huang, L. Stanciu, M. Tarakci, Y. Gencer, An in-Vitro Study: The Effect of Surface Properties on Bioactivity of the Oxide Layer Fabricated on Zr Substrate by Peo, Surf. Interfaces 22, 100884 (2021). DOI: https://doi.org/10.1016/j.surfin.2020.100884
  • [43] U.T. Seyfert, V. Biehl, J. Schenk, In Vitro Hemocompatibility Testing of Biomaterials According to the Iso 10993-4, Biomol. Eng. 19 (2-6), 91-96 (2002). DOI: https://doi.org/10.1016/S1389-0344(02)00015-1
  • [44] R.F. Wallin, E. Arscott, A Practical Guide to ISO 10993-5: Cytotoxicity, Med. Device Diagn. Ind. 20, 96-98 (1998).
  • [45] M. Gonsior, R. Kustosz, M. Kościelniak-Ziemniak, T. Wierzchoń, Biocompatible Evaluation of Biomaterials Used in the New Polish Extracorporeal Pulsatile Heart Assist Device Religaheart Ext, Arch. Metall. Mater. 60 (2015). DOI: https://doi.org/10.1515/amm-2015-0374
  • [46] Ö. Özgün, H.Ö. Gülsoy, R. Yılmaz, F. Fındık, Microstructural and Mechanical Characterization of Injection Molded 718 Superalloy Powders, J. Alloys Compd. 576, 140-153 (2013). DOI: https://doi.org/10.1016/j.jallcom.2013.04.042
  • [47] J.L. Johnson, L.K. Tan, P. Suri, R.M. German, Mechanical Properties and Corrosion Resistance of Mim Ni-Based Superalloys, Proceedings of the 2004 International Conference on Powder Metallurgy and Particulate Materials, Princeton, USA, Citeseer, (2004) 89-101.
  • [48] K. Anderson, J. Groza, M. Fendorf, C. Echer, Surface Oxide Debonding in Field Assisted Powder Sintering, Mat. Sci. Eng. A-Struct. 270 (2), 278 (1999). DOI: https://doi.org/10.1016/S0921-5093(99)00197-5
  • [49] H. Takeda, K. Nakano, N. Tanibata, M. Nakayama, Novel Mg-Ion Conductive Oxide of Μ-Cordierite Mg0.6Al1.2Si1.8O6, Sci. Technol. Adv. Mater. 21 (1), 131 (2020). DOI: https://doi.org/10.1080/14686996.2020.1730237
  • [50] A. Arifin, A.B. Sulong, N. Muhamad, J. Syarif, M.I. Ramli, Powder Injection Molding of Ha/Ti6al4v Composite Using Palm Stearin as Based Binder for Implant Material, Mater. Design 65, 1028-1034 (2015). DOI: https://doi.org/10.1016/j.matdes.2014.10.039
  • [51] M.B. Shongwe, I.M. Makena, M.M. Ramakokovhu, T. Langa, P.A. Olubambi, Sintering Behavior and Effect of Ternary Additions on the Microstructure and Mechanical Properties of Ni-Fe-Based Alloy, Part. Sci. Technol. 36 (5), 643-654 (2018). DOI: https://doi.org/10.1080/02726351.2017.1298686
  • [52] X. Hou, Q. Ren, Y. Yang, X. Cao, J. Hu, C. Zhang, H. Deng, D. Yu, K. Li, W. Lan, Effect of Temperature on the Electrochemical Pitting Corrosion Behavior of 316l Stainless Steel in Chloride-Containing Mdea Solution, J. Nat. Gas Sci. Eng. 86, 103718 (2021). DOI: https://doi.org/10.1016/j.jngse.2020.103718
  • [53] B. Çiçek, Y. Sun, A Study on the Mechanical and Corrosion Properties of Lead Added Magnesium Alloys, Mater. Design 37, 369-372 (2012). DOI: https://doi.org/10.1016/j.matdes.2012.01.029
  • [54] J. Qiu, A. Wu, Y. Li, Y. Xu, R. Scarlat, D.D. Macdonald, Galvanic Corrosion of Type 316l Stainless Steel and Graphite in Molten Fluoride Salt, Corros. Sci. 170, 108677 (2020). DOI: https://doi.org/10.1016/j.corsci.2020.108677
  • [55] M.L.d.A. Afonso, R.F. Jaimes, P.A. Nascente, S.O. Rogero, S.M. Agostinho, Surface Characterization, Electrochemical Behaviour and Cytotoxicity of Uns S31254 Stainless Steel for Orthopaedic Applications, Mater. Lett. 148, 71-75 (2015). DOI: https://doi.org/10.1016/j.matlet.2015.01.157
  • [56] M. Speidel, New Nitrogen-Bearing Austenitic Stainless Steels with High Strength and Ductility, Met. Sci. Heat Treat. 47 (2005). DOI: UDC 669.14.018.8:669.786
  • [57] V. Pokhmurs’kyi, O. Balyts’kyi, O. Krokhmal’nyi, General and Pitting Corrosion of Chromium-Manganese Steels in Halogen Solutions, Mater. Sci. 36 (3), 313-324 (2000). DOI: https://doi.org/10.1007/BF02769592
  • [58] O. Balyts’kyi, I. Kostyuk, Strength of Welded Joints of Cr-Mn Steels with Elevated Content of Nitrogen in Hydrogen-Containing Media, Mater. Sci. 45 (1), 97-107 (2009). DOI: https://doi.org/10.1007/s11003-009-9166-7
Uwagi
1. Authors would like to thank the Karabuk University Scientific Project Unit (FDK-2019-2106) for financial support in the completion of this study.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b1bb206-c4e0-4890-befa-3c984f80c45e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.