PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of support parameters for reusable mining excavations based on a neuro-heuristic prognostic model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This publication delves into geomechanical processes encountered during sequential longwall mining of coal seams, with a unique focus on reusing the conveyor track of the prior longwall as the ventilation pathway for the subsequent longwall. An in-depth geomechanical rationale is provided for the reuse of excavations within jointed rock formations.To ascertain the critical roles played by various support and protective elements at each distinct mining stage, a comprehensive analysis is performed using finite element techniques to delineate thethree-dimensional stress-strain characteristics of the rock mass.Employing an innovative methodology integrating multifactorial analysis, contemporary structural identification algorithms, and a neuro-heuristic approach for predictive mathematical modeling, an integral stability metric for reusable mining excavations isintroduced. Specifically, this metric quantifies the relative preservation of theexcavation's cross-sectional area following its connection to thesecond longwall.Furthermore, the study tackles the challenge of nonlinear optimization through the application of the generalized reduced gradient method (Frank-Wolfe), ultimately deriving the optimal combination of factors that maximizes the preservation of the cross-sectional area for these reusable excavations.
Czasopismo
Rocznik
Strony
200--211
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Dnipro University of Technology, 19 Yavornytskoho Ave., UA-49005,Dnipro, Ukraine
  • Dnipro University of Technology, 19 Yavornytskoho Ave., UA-49005,Dnipro, Ukraine
autor
  • Mineral and Energy Economy Research Institute, Polish Academy of Sciences, J. Wybickiego, PL-31261, Krakow, Poland
  • AGH University of Krakow, ave. Mickiewicza 30, PL-30059, Krakow, Poland
Bibliografia
  • [1]Haidai O., Ruskykh V., Ulanova N., Prykhodko V., Cabana E. C., Dychkovskyi R., Howaniec N., Smolinski A.:Mine field preparation and coal mining in western Donbas: Energy security of Ukraine–acase study. Energies, 2022, 15(13), 4653. https://doi.org/10.3390/en15134653
  • [2]Kovalevska I., Samusia V., Kolosov D., Snihur V., Pysmenkova T.:Stability of the overworked slightly metamorphosed massif around mine working. Mining of Mineral Deposits, 2020, 14(2), 43–52. https://doi.org/10.33271/mining14.02.043
  • [3]Vlasov S. F., Moldavanov Ye. V.:Effect of geological and technological parameters on the convergence in a Stope. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2021, (6), 16–22. https://doi.org/10.33271/nvngu/2021-6/016
  • [4]Liu H., Jiang Z., Chen W., Chen F., Ma F., Li D., Liu Z., Gao H.:A simulation experimental study on the advance support mechanism of a roadway used with the longwall coal mining method. Energies,2022,15(4), 1366. https://doi.org/10.3390/en15041366
  • [5]Yang X., Huang R., Yang G., Wang Y., Cao J., Liu J., He M.:Validation study of no‐pillar mining method without advance tunneling: A case study of a mine in China. Energy Science & Engineering,2021,9(10), 1761–1772. https://doi.org/10.1002/ese3.949
  • [6]Gao Y., Gai Q., Zhang K., Fu Q., Zhang X.:Strata behaviour and stability control of the automatic roadway formation by roof cutting below a fault influenced Longwall Goaf. Scientific Reports, 2022, 12(1). https://doi.org/10.1038/s41598-022-20810-7
  • [7]Jangara H., Ozturk C. A.:Longwall top coal caving design for thick coal seam in very poor strength surrounding strata. International Journal of Coal Science & Technology,2021,8(4), 641–658. https://doi.org/10.1007/s40789-020-00397-y
  • [8]Wang J., Yang S., Wei W., Zhang J., Song Z.:Drawing mechanisms for top coal in longwall top coal caving (LTCC): A review of two decades of literature. International Journal of Coal Science & Technology, 2021, 8(6), 1171–1196. https://doi.org/10.1007/s40789-021-00453-1
  • [9]Petlovanyi M. V., Lozynskyi V. H., Saik P. B., Sai K. S.:Modern experience of low-coal seams underground mining in Ukraine. International Journal of Mining Science and Technology,2018,28(6), 917–923. https://doi.org/10.1016/j.ijmst.2018.05.014
  • [10]Li Y., Zhu E., Zhang K., Li M., Wang J., Li C.:Longwall mining under gateroads and gobs of abandoned small mine. International Journal of Mining Science and Technology,2017,27(1), 145–152. https://doi.org/10.1016/j.ijmst.2016.11.004
  • [11]Babets D. V., Sdvyzhkova O. O., Sosna D. O.:Numerical simulation of the joint conditions effect on the rock mass strength. Journal of Kryvyi Rih National University,2018,(47), 169–175. https://doi.org/10.31721/2306-5451-2018-1-47-169-175
  • [12]Shi X., Zhang J.:Characteristics of overburden failure and fracture evolution in shallow buried working face with large mining height. Sustainability, 2021, 13(24), 13775. https://doi.org/10.3390/su132413775
  • [13]Singh G. S. P.:Conventional approaches for assessment of caving behavior and support requirement with regard to strata control experiences in longwall workings. Journal of Rock Mechanics and Geotechnical Engineering,2015,7(3), 291–297. https://doi.org/10.1016/j.jrmge.2014.08.002
  • [14]Prykhodchenko V. F., Shashenko O. M., Sdvyzhkova O. O., Prykhodchenko O. V., Pilyugin V. I.:Predictability of a small-amplitude disturbance of coal seams in western Donbas. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2020, (4), 024–029. https://doi.org/10.33271/nvngu/2020-4/024
  • [15]Babets D., Sdvyzhkova O., Hapieiev S., Shashenko O., PrykhodchenkoV.:Multifactorial analysis of agateroad stability at goaf interface during longwall coal mining –a case study. Mining of Mineral Deposits,2023,17(2), 9–19. https://doi.org/10.33271/mining17.02.009
  • [16]Babets D, Sdvyzhkova O., Shashenko O., Kravchenko K., Cabana E. C.:Implementation of probabilistic approach to rock mass strength estimation while excavating through fault zones. Mining of Mineral Deposits, 2019, 13(4), 72–83. https://doi.org/10.33271/mining13.04.072
  • [17]Shashenko O.M., Sdvyzhkova O.O., Babets D.V.:Method of argument group account in geomechanical calculations. 12th International Symposium on Environmental Issues and Waste Management in Energy and Mineral Production SWEMP 2010, 2010, 488–493
  • [18]Babets D., Solodyankin O., Yankin O.:Mathematical modeling of the external factors influence on the margin of strength while shaft sinking. Transactions of Kremenchuk Mykhailo Ostrohradskyi National University, 2018, 65–72. https://doi.org/10.30929/1995-0519.2018.1.65-72
  • [19]Madala H. R., Ivakhnenko A. G.:Inductive learning algorithms for Complex Systems modeling. CRC Press, 2018
  • [20]Elbaz K., Shen S.-L., Zhou A., Yin Z.-Y., Lyu H.-M.:Prediction of disc cutter life during shield tunneling with AI via the incorporation of a genetic algorithm into a GMDH-type neural network. Engineering,2021,7(2), 238–251. https://doi.org/10.1016/j.eng.2020.02.016
  • [21]Facó J. L. D.:A generalized reduced gradient algorithm for solving large-scale discrete-time Nonlinear Optimal Control Problems. IFAC Proceedings Volumes, 1989, 22(2), 45–50. https://doi.org/10.1016/b978-0-08-037869-5.50011-x
  • [22]Dychkovskyi R., Falshtynskyi V., Ruskykh V., Cabana E., Kosobokov O.:A modern vision of simulation modelling in mining and near mining activity. E3S Web of Conferences, 2018, 60, 00014. https://doi.org/10.1051/e3sconf/20186000014
  • [23]El Mouatasim A.:Two-phase generalized reduced gradient method for constrained global optimization. Journal of Applied Mathematics, 2010, 1–19. https://doi.org/10.1155/2010/976529
  • [24]Dyczko A.:Real-time forecasting of key coking coal quality parameters using neural networks and artificial intelligence. Rudarsko-Geološko-Naftni Zbornik, 2023, 38(3), 105–117. https://doi.org/10.17794/rgn.2023.3
  • [25]Tereshchuk R. M., Khoziaikina N. V., Babets D. V.:Substantiation of rational roof-bolting parameters. Scientific Bulletin of National Mining University, 2018, 1, 19–26. https://doi.org/10.29202/nvngu/2018-1/18
  • [26]Babets D. V.:Development of rock mass stability classification depending on natural disturbances. Transactions оf Kremenchuk Mykhailo Ostrohradskyi National University, 2016, 2(97), 44-51
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b190506-c56b-4161-80b1-5ec126be9781
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.