PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of photovoltaic panel cooling beneath a single nozzle based on a configurations framework

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solar cell performance decreases with increasing temperature, heat can reduce output efficiency by 10–25%. The operating temperature plays a key role in the photovoltaic conversion process. Increase in electrical efficiency depends on cooling techniques, in particular photovoltaic modules installed in the high temperature regions. A cooling process using a single nozzle of photovoltaic panel operating under different configurations was simulated. The simulation contains two parts: the first is a thermodynamic investigation of fluid impingement upon the sensor front face. The second is a performance comparison between two types of glass cover. The major result that emerges from this simulation is the effect of a single nozzle arrangement to enhance the cooling process, under a low cadence of impinging droplets in the range 0.1–1.7 m/s.
Słowa kluczowe
Rocznik
Strony
115--128
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • Mechanical Engineering Department, Badji Mokhtar University of Annaba, P.O. Box 12, DZ-23000, Algeria
  • Mechanical Engineering Department, Badji Mokhtar University of Annaba, P.O. Box 12, DZ-23000, Algeria
Bibliografia
  • [1] Chokmaviroj S., Wattanapong R., Suchart Y.: Performance of a 500 kWp grid connected photovoltaic system at Mae Hong Son province Thailand. Renew. Energ.31(2006), 1, 19–28.
  • [2] Omubo-Pepple V.B., Israel-Cookey C., Alaminokuma G.I.: Effects of temperature, solar flux and relative humidity on the efficient conversion of solar energy to electricity. Eur. J. Sci. Res. 35(2009), 2, 173–180.
  • [3] Kawamura T., Harada K., Ishihara Y., Todaka T., Oshiro T., Nakamura H., Imataki M.: Analysis of MPPT characteristics in Photovoltaic power system. Sol. Energ. Mat. Sol. C. 47(1997), 1-4, 155–165.
  • [4] Skoplaki E., Palyvos J.A.: On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol. Energy83(2009), 5, 614–624.
  • [5] Smith M.K., Selbak H., Wamser C.C., Day N.U., Krieske M., Sailor D.J., Rosenstiel T.N.: Water cooling method to improve the performance of fieldmounted, insulated, and concentrating photovoltaic modules. J. Sol. Energ. Eng. 136(2014), 3, 034503.
  • [6] Tonui J.K., Tripanagnostopoulos Y.: Air-cooled PV/T solar collectors with low cost performance improvements. Sol. Energy 81(2007), 4, 498–511.
  • [7] Kaiser A.S., Zamora B., Mazón R., García J.R., Vera F.: Experimental study of cooling BIPV modules by forced convection in the air channel. Appl. Energ. 135(2014), 88–97.
  • [8] Choubineh N., Jannesari H., Kasaeian A.: Experimental study of the effect of using phase change materials on the performance of an air-cooled photovoltaic system. Renew.Sust. Energ. Rev. 101(2019), 103–111.
  • [9] Du B., Hu E., Kolhe M.: Performance Analysis of Water Cooled Concentrated Photovoltaic (CPV) System. Renew. Sust. Energ. Rev. 16(2012), 9, 6732–6736.
  • [10] Abdolzadeh M., Ameri M.: Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells. Renew. Energ. 34(2009), 1, 91–96.
  • [11] Bahaidarah H., Subhan A., Gandhidasan P., Rehman S.: Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions. Energy 59(2013), 445–453.
  • [12] Najafi H., Woodbury K.A.: Optimization of a cooling system based on Peltier effect for photovoltaic cells. Sol. Energy 91(2013), 152–160.
  • [13] Rahimi M., Sheyda P.V.E., Parsamoghadam M.A., Masahi M.M., Alsairafi A.A.: Design of a self-adjusted jet impingement system for cooling of photovoltaic cells. Energ. Convers. Manage. 83(2014), 48–57.
  • [14] Nižetić S., Čoko D., Yadav A., Grubišić-Čabo F.: Water spray cooling technique applied on a photovoltaic panel: The performance response. Energ. Convers. Manage. 108(2016), 287–296.
  • [15] Otmani A., Mzad H., Bey K.: A thermal parametric study of non-evaporative spray cooling process. MATEC Web of Conferences 240(2018), 01030.
  • [16] Otmani A., Mzad H.: Parametric study of non-evaporative spray cooling on aluminum plate: Simulation and analysis. Therm. Sci. 23(2019), 4, S1393–S1402.
  • [17] Mikielewicz D., Muszynski T., Mikielewicz J.: Model of heat transfer in the stagnation point of rapidly evaporating microjet. Archives of Thermodynamics 33(2012), 1, 139–152.
  • [18] Rusowicz A., Leszczynski M., Grzebielec A., Laskowski R.: Experimental investigation of single-phase microjet cooling of microelectronics. Archives of Thermodynamics 36(2015), 3, 139–147.
  • [19] Tebbal M., Mzad H.: An hydrodynamic study of a water jet dispersion beneath liquid sprayers. Forsch. Ingenieurwes. 68(2004), 3, 126–132.
  • [20] Mzad H., Tebbal M.: Thermal diagnostics of highly heated surfaces using waterspray cooling. Heat Mass Transfer 45(2009), 3, 287–295.
  • [21] https://www.comsol.com/release/5.2 (accessed: 08 Feb. 2020).
  • [22] Byron Bird R., Stewart Warren E., Lightfoot Edwin N.: Transport Phenomena. John Wiley & Sons, New York 1966.
  • [23] White Frank M.: Fluid Mechanics. McGraw-Hill, 1999.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b18d9b2-b781-42cd-8756-61581c0b005e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.