PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

CropSyst model for wheat under deficit irrigation using sprinkler and drip irrigation in sandy soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Model CropSyst do nawodnień pszenicy metodą deszczowania i metodą kroplową na glebach piaszczystych
Języki publikacji
EN
Abstrakty
EN
CropSyst (Cropping Systems Simulation) is used as an analytic tool for studying irrigation water management to increase wheat productivity. Therefore, two field experiments were conducted to 1) calibrate CropSyst model for wheat grown under sprinkler and drip irrigation systems, 2) to use the simulation results to analyse the relationship between applied irrigation amount and the resulted yield and 3) to simulate the effect of saving irrigation water on wheat yield. Drip irrigation system in three treatments (100%, 75% and 50% of crop evapotranspiration – ETc) and under sprinkler irrigation system in five treatments (100%, 80%, 60%, 40%, and 20% of ETc) were imposed on these experiments. Results using CropSyst calibration revealed that results of using CropSyst calibration revealed that the model was able to predict wheat grain and biological yield, with high degree of accuracy. Using 100% ETc under drip system resulted in very low water stress index (WSI = 0.008), whereas using 100% ETc sprinkler system resulted in WSI = 0.1, which proved that application of 100% ETc enough to ensure high yield. The rest of deficit irrigation treatments resulted in high yield losses. Simulation of application of 90% ETc not only reduced yield losses to either irrigation system, but also increased land and water productivity. Thus, it can be recommended to apply irrigation water to wheat equal to 90% ETc to save on the applied water and increase water productivity.
PL
CrosSyst (ang. Cropping Systems Simulation) wykorzystano jako narzędzie analityczne do zarządzania wodą do nawodnień w celu zwiększenia produktywności pszenicy. Przeprowadzono dwa eksperymenty terenowe w celu: 1) kalibracji modelu CropSyst w odniesieniu do pszenicy uprawianej w warunkach nawodnień deszczownianych i kroplowych, 2) zastosowania wyników symulacji do analizy zależności między wielkością nawodnień a plonem i 3) symulacji wpływu oszczędności wody użytej do nawodnień na plon pszenicy. W eksperymentach zastosowano trzy warianty nawodnień kroplowych (100%, 75% i 50% ewapotranspiracji – ETc) i pięć wariantów nawadniania deszczownianego (100%, 80%, 60%, 40% i 20% ETc). Wyniki kalibracji wykazały, że wartość RMSE wynosiła 0,03 i 0,14 t·ha–1 odpowiednio dla ziarna i biomasy. Model umożliwiał symulację dobowego stresu wodnego w ciągu całego sezonu wegetacyjnego. W wariancie 90% ETc nie tylko stwierdzono zmniejszenie strat plonu w każdym z systemów nawodnień, ale także zwiększenie produktywności wody. Dlatego można zalecić stosowanie dawki 90% ETc w celu oszczędności wody i zwiększenia jej produktywności.
Wydawca
Rocznik
Tom
Strony
57--64
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Water Requirements and Field Irrigation Research Department, Soils, Water and Environment Research Institute, Agricultural Research Center; 9 El-Gamah Street El-Giza, Egypt
autor
  • Water Requirements and Field Irrigation Research Department, Soils, Water and Environment Research Institute, Agricultural Research Center; 9 El-Gamah Street El-Giza, Egypt
autor
  • Irrigation Department, CEBAS-CSIC, Campus Universitario de Espinardo 30100 Espinardo, Apartado 164, Spain
  • Botany Department, National Research Centre, 33 El Behouth Street, Dokki, 12622, Giza, Egypt
Bibliografia
  • ALLEN R.G., PEREIRA L.S., RAES D., SMITH M. 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper. No. 56. Rome. FAO pp. 300.
  • BUKHAT N.M. 2005. Studies in yield and yield associated traits of wheat (Triticum aestivum L.) genotypes under drought conditions. MSc Thesis. Department of Agronomy. Sindh Agriculture University, Tandojam, Pakistan.
  • CONFALONIERI R., BECHINI L. 2004. A preliminary evaluation of the simulation model CropSyst for Alfalfa. European Journal of Agronomy. No. 21. Iss. 2 p. 223–237.
  • DENCIC S., KASTORI R., KOBILJSKI B., DUGGAN B. 2000. Evaporation of’ grain yield and its components in wheat cultivars and land races under near optimal and drought conditions. Euphytica. No. 1 p. 43–52.
  • EL-KHOLY M.A., OUDA S.A., GABALLAH M.S., HOZAYN M. 2005. Predicting the interaction between the effect of anti-transpirant and weather on productivity of wheat plant grown under water stress. Journal of Agronomy. No. 4 p. 75–82.
  • ENGLISH M., MUSICK J.T., MURTY V.V.N. 1990. Deficit irrigation. In: Management of farm irrigation systems. Ed. G.J. Hoffman, T.A. Howell, K.H. Solomon. St Joseph, Michigan. ASAE p. 631–663.
  • FAO 2003. Unlocking the water potential of agriculture: FAO Corporate Document Repository. Rome pp. 62.
  • GUPTA N. K., GUPTA S., KUMAR A. 2001. Effect of water stress on physiological attributes and their relationship with growth and yield in wheat cultivars at different growth stages. Journal of Agronomy. No. 86 p. 1437–1439.
  • HAMDY A., SARDO V., GHANEM K.A.F. 2005. Saline water in supplemental irrigation of wheat and barley under rain fed agriculture. Agricultural Water Management. No. 78 p. 122–127.
  • IBRAHIM M.M., OUDA S.A., TAHA A., EL AFANDI G., EID S.M. 2012. Water management for wheat grown in sandy soil under climate change conditions. Journal of Soil Science and Plant Nutrition. No. 12 p. 195–210.
  • MATTHEWS R., STEPHENS W., HESS T., MASON T., GRAVES A. 2000. Applications of soil/crop simulation models in developing countries. DFID NRSP Programme Development Report PD082. Silsoe, UK. Institute of Water and Environment, Cranfield University pp. 175.
  • MCMASTER G.S. 1997. Phonology, development, and growth of wheat Triticum aestivum L. shoot apex: A review. Advances in Agronomy. No. 59 p. 63–118.
  • NORELDIN T., OUDA S., ABOUELENEIN R. 2013. Development of management practices to address wheat vulnerably to climate change in North Delta. Proceeding of the 11th International Conference on Development of Dry Lands. Beijing. March 18–21, 2013 p. 982–995.
  • NYAMAI M., MATI B.M., HOME P.G., ODONGO B., WANJOGU R., ANDTHURANIRA E.G. 2012. Improving land and water productivity in basin rice cultivation in Kenya through System of Rice Intensification (SRI). Agricultural Engineering International: CIGR Journal. No. 14 (2) p. 1–9.
  • OUDA S., EL-AFANDI G., NORELDIN T. 2013. Modeling climate change impacts and adaptation strategies for crop production in Egypt: an overview. In: Climate change and water resources. Eds. T. Younos, C.A. Grady. Berlin–Heidelberg. Springer p. 99–120.
  • OUDA S.A., SAYED M., EL AFANDI G., KHALIL F.A. 2010. Developing an adaptation strategy to reduce climate change risks on wheat grown in sandy soil in Egypt. In: Tenth International Conference on Development of Drylands. Meeting the Challenge of Sustainable Development in Drylands under Changing Climate – Moving from Global to Local. International Dryland Development Commission, 12–15 December 2010, Cairo, Egypt p. 34–35.
  • OWEIS T.Y., HACHUM A.Y. 2003. Improving water productivity in the dry areas of west Asia and north Africa. In: Water productivity in agriculture: limits and opportunities for improvement. Eds. J.W. Kijne, R. Barker, D. Molden. CAB International p. 179–198.
  • PALA M., STOCKLE C.S., HARRIS H.C. 1996. Simulation of durum wheatTriticum turgidum ssp Durum growth under different water and nitrogen regimes in a Mediterranean environment using CropSyst. Agricultural Systems. No. 512 p. 147–163.
  • SLAFER G.A., SATORRE E.H. 2000. Wheat: ecology and physiology of yield determination. CRC Press. ISBN 978 1560228752 pp. 503.
  • STOCKLE C.O., DONATELLI M., NELSON R. 2003. CropSyst, a cropping systems simulation model. European Journal of Agronomy. No. 18 p. 289–307.
  • STOCKLE C.O., MARTIN S., CAMPBELL G.S. 1994. CropSyst, a cropping systems model: water/nitrogen budgets and crop yield. Agricultural Systems. No. 46 p. 335–359.
  • STOCKLE C.O., NELSON R. 1994. Cropping Systems Simulation: Model Users Manual (Version 1.02. 00). Biological Systems Engineering Department, Washington State University pp. 167.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b17e9ec-4d60-43c9-8800-d62f252f5f90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.