Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present paper we present the approach for modeling of the elastic behavior of open-cell metallic foams concerning non-uniform pore size distribution. This approach combines design of foam structures and numerical simulations of compression tests using finite element method (FEM). In the design stage, Laguerre-Voronoi tessellations (LVT) were performed on several sets of packed spheres with defined variation of radii, bringing about a set of foam structures with porosity ranging from 74 to 98% and different pore size variation quantified by the coefficient of pore volume variation, CV(V), from 0.5 to 2.1. Each structure was numerically subjected to uni-axial compression test along three directions within the elastic region. Basing on the numerical response, the effective Young’s modulus, Eeff, was calculated for each structure. It is shown that the Eeff is not only dependent on the porosity but also on the pore size variation.
Wydawca
Czasopismo
Rocznik
Tom
Strony
259--262
Opis fizyczny
Bibliogr. 21 poz., rys., wzory
Twórcy
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warsaw, Poland
Bibliografia
- [1] J. Banhart, Aluminium foams for lighter vehicles, Int. J. Veh. Des. 37, 114 (2005).
- [2] R. Liu, A. Antoniou, A relationship between the geometrical structure of a nanoporous metal foam and its modulus, Acta Mater. 61, 7, 2390-2402 (2013).
- [3] C. Veyhl, I.V. Belova, G.E. Murch, T. Fiedler, Finite element analysis of the mechanical properties of cellular aluminium based on micro-computed tomography, Mater. Sci. Eng. A 528, 13-14, 4550-4555 (2011).
- [4] H. X. Zhu, J. R. Hobdell, A. H. Windle, Effects of cell irregularity on the elastic roperties of open-cell foams, Acta Mater. 48, 20, 4893-4900 (2000).
- [5] J. Skibinski, K. Cwieka, T. Kowalkowski, B. Wysocki, T. Wejrzanowski, K.J. Kurzydlowski, The influence of pore size variation on the pressure drop in open-cell foams, Mater. Des. 87, 650-655 (2015).
- [6] M. Geißendörfer, A. Liebscher, C. Proppe, C. Redenbach, D. Schwarzer, Stochastic multiscale modeling of metal foams, Probabilistic Eng. Mech. 37, 132-137 (2014).
- [7] X. Zhu, S. Ai, D. Fang, B. Liu, X. Lu, A novel modeling approach of aluminum foam based on MATLAB image processing, Comput. Mater. Sci. 82, 451-456 (2014).
- [8] Y. An, C. Wen, P.D. Hodgson, C. Yang, Investigation of cell shape effect on the mechanical behaviour of open-cell metal foams, Comput. Mater. Sci. 55, 1-9 (2012
- [9] D. Edouard, M. Lacroix, C.P. Huu, F. Luck, Pressure drop modeling on SOLID foam: State-of-the art correlation, Chem. Eng. J. 144, 2, 299-311 (2008).
- [10] A. Jung, S. Diebels, Modelling of Metal Foams by a Modified Elastic Law, Mech. Mater., 2016.
- [11] G. Pia, F. Delogu, On the elastic deformation behavior of nanoporous metal foams, Scr. Mater. 69, 11-12, 781-784 (2013).
- [12] J. Wieding, A. Wolf, R. Bader, Numerical optimization of open- -porous bone scaffold structures to match the elastic properties of human cortical bone, J. Mech. Behav. Biomed. Mater. 37, 56-8 (2014).
- [13] B. Drach, I. Tsukrov, A. Trofimov, Comparison of full field and single pore approaches to homogenization of linearly elastic materials with pores of regular and irregular shapes, Int. J. Solids Struct., (2016).
- [14] A. P. Roberts, E.J. Garboczi, Elastic properties of model random three-dimensional open - cell solid 50, 2016, 33-55 (2002).
- [15] I. Vecchio, C. Redenbach, K. Schladitz, A. M. Kraynik, Improved models of solid foams based on soap froth, Comput. Mater. Sci. 120, 60-69, Jul. (2016).
- [16] T. Wejrzanowski, J. Skibinski, L. Madej, and K. J. Kurzydlowski, Modeling structures of cellular materials for application at various length-scales, Comput. Metods Mater. Sci. 13, 4, 493-500 (2013).
- [17] T. Wejrzanowski, J. Skibinski, J. Szumbarski, K.J. Kurzydlowski, Structure of foams modeled by Laguerre-Voronoi tessellations, Comput. Mater. Sci. 67, 216-221 (2013).
- [18] T. Fiedler, I. V. Belova, and G. E. Murch, “μ-CT-based finite element analysis on imperfections in open-celled metal foam: Mechanical properties, Scr. Mater. 67, 5 455-458 (2012).
- [19] T. Wejrzanowski, J. Skibinski, K. Cwieka, K.J. Kurzydlowski, Micro-computed tomography and finite element method study of open-cell porous materials, in MATEC Web of Conferences 30, (2015).
- [20] T. Wejrzanowski, S.H. Ibrahim, K. Cwieka, J. Milewski, K.J. Kurzydlowski, Design of open-porous materials for high-temperature fuel cells, J. Power Technol. 96, 3 178-182 (2016).
- [21] L. J. and M.F. A. Gibson, Cellular Solids. Cambridge University Press, 1997.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b17e0f7-47c7-4822-83fb-ec1ef50c92ff