PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of High Strain Rate Flow Behavior of 7175 Aluminum Alloy Based on Arrhenius-Type Constitutive Equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The flow behavior of 7175 aluminum alloy was modeled with Arrhenius-type constitutive equations using flow stress curves during a hot compression test. Compression tests were conducted at three different temperatures (250°C, 350°C, and 450°C) and four different strain rates (0.005, 0.05, 0.5, and 5 s-1). A good consistency between measured and set values in the experimental parameters was shown at strain rates of 0.005, 0.05, and 0.5 s-1, while the measured data at 5 s-1 showed the temperature rise of the specimen, which was attributable to deformation heat generated by the high strain rate, and a fluctuation in the measured strain rates. To minimize errors in the fundamental data and to overcome the limitations of compression tests at high strain rates, constitutive equations were derived using flow curves at 0.005, 0.05, and 0.5 s-1 only. The results indicated that the flow stresses predicted according to the derived constitutive equations were in good agreement with the experimental results not only at strain rates of 0.005, 0.05, and 0.5 s-1 but also at 5 s-1. The prediction of the flow behavior at 5 s-1 was correctly carried out by inputting the constant strain rate and temperature into the constitutive equation.
Twórcy
  • Korea Institute of Industrial Technology (KITECH), Incheon 21999, Republic of Korea
  • Inha University, Incheon 22212, Republic of Korea
  • Korea Institute of Industrial Technology (KITECH), Incheon 21999, Republic of Korea
autor
  • Korea Institute of Industrial Technology (KITECH), Incheon 21999, Republic of Korea
autor
  • Korea Institute of Industrial Technology (KITECH), Incheon 21999, Republic of Korea
  • Inha University, Incheon 22212, Republic of Korea
Bibliografia
  • [1] Y. C. Lin, M. S. Chen, J. Zhang, Comput. Mater. Sci. 42, 470-477 (2008).
  • [2] Y. C. Lin, Ge Liu, Comput. Mater. Sci. 48, 54-58 (2010).
  • [3] S. Spigarellim, E. Evangelista, H. J. McQueen, Scripta Materialia 49, 914-920 (2003).
  • [4] Sumantra Mandal, V. Rakesh, P. V. Sivaprasad, S. Venugopal, K. V. Kasiviswanathan, Mater. Sci. Eng. A. 500, 114-121 (2009).
  • [5] N. Haghdadi, A. Zarei-Hanzaki, H. R. Abedi, Mater. Sci. Eng. A. 535, 252-257 (2012).
  • [6] An He, Ganlin Xie, Hailong Zhang, Xitao Wang, Mechanics of Mater. 71, 52-61 (2017).
  • [7] H. J. McQueen, N. D. Ryan, Mater. Sci. Eng. A. 322, 43-63 (2002).
  • [8] An He, Ganlin Xie, Hailong Zhang, Xitao Wang, Mater. and Design 52, 677-685, (2013).
  • [9] Xingrui Chen, Qiyu Liao, Yanxia Niu, Weitao Jia, Qichi Le, Chunlong Cheng, Fuxiao Yu, Jianzhong Cui, J. of Mater. Research and Technology 8(2), 1859-1869 (2019).
  • [10] C. M. Sellars, W. J. McTegart, Acta Metallurgica 47, 2377-2389 (1966).
  • [11] C. Zener, J. H. Hollomon, J. Appl. Phys. 15, 22-32 (1944).
  • [12] J. Jonas, C. M. Sellars, J. Mcgw, Tegart Int. Metal. Reviews. 14, 1-24 (1969).
  • [13] A. Thomas, M. El-Wahabi, J. M. Cabrera, J. M. Parado, J. Mater. Process. Technol. 177, 469-472 (2006).
Uwagi
EN
1. This work was supported by the Technology Innovation Program (10073115, Development of Energy-Saving Type Constant-Speed Extrusion System for High Strength Al Alloys) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea).
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b16e243-7395-4e94-bc9f-41087e3a9b85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.