Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study aimed to trace the spatial and seasonal changes in pigment composition and to develop mathematical formulas to quantitatively describe their composition in different seasons in two regions: the open Baltic Sea region and the Gulf of Gdańsk. The analyses were carried out based on a 20-year database of empirical data from 1999 to 2018 obtained using the HPLC method. The proportion of chlorophyll a in the total content of pigments was stable irrespective of the season and region (62% ± 5%). In summer and autumn, a higher total amount of photoprotective carotenoids (about 15–17% in total pigment content) than photosynthetic ones was recorded. The concentrations of marker pigments are related to periodic increases in the corresponding algal classes. The spring bloom dominated by diatoms and dinoflagellates results in 40% of fucoxanthin and 70% of peridinin in relation to their total content throughout all seasons. The highest percentage of chlorophyll b (up to 10% in open waters) and other pigments specific to green algae (neoxanthin, violaxanthin, lutein) were observed during summer and autumn. The 30% percentage of fucoxanthin confirms the occurrence of diatoms in autumn. The concentrations of groups and individual pigments have been determined as a function of chlorophyll a concentration. The best approximation results were obtained for the seasonal dependence of marker pigments for specific classes of algae. In summer and autumn – for chlorophyll b concentrations – zeaxanthin, fucoxanthin, alloxanthin and peridinin standard error factor ranges between 1.56 and 1.84.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
405--423
Opis fizyczny
Bibliogr. 92 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
- 1. Aminot, A., Rey, F., 2001. Chlorophyll a: Determination by spectroscopic methods. ICES Tech. Mar. Environ. Sci. 17. https://doi.org/10.25607/OBP-278
- 2. Babin, M., Sadoudi, N., Lazzara, L., Gostan, J., Partensky, F., Bricaud, A., Veldhuis, M., Morel, A., Falkowski, P.G., 1996. Photo-acclimation strategy of Prochlorococcus sp. and consequences on large scale variations of photosynthetic parameters, Ocean Opt. 13. In: Proc. SPIE 2963, 314-319. https://doi.org/10.1117/12.266462
- 3. Barlow, R.G., Mantoura, R.F.C., Gough, M.A., Fileman, T.W., 1993. Pigment signatures of the phytoplankton composition in the north-eastern Atlantic during the 1990 spring bloom. Deep-Sea Res. II 40 (1-2), 459-477. https://doi.org/10.1016/0967-0645(93)90027-K
- 4. Barlow, R.G., Stuart, V., Lutz, V., Sessions, H., Sathyendranath, S., Platt, T., Kyewalyanga, M., Clementson, L., Fukasawa, M., Watanabe, S., Devred, E., 2007. Seasonal pigment patterns of surface phytoplankton in the subtropical southern hemisphere. Deep-Sea Res. I 54, 1687-1703. https://doi.org/10.1016/j.dsr.2007.06.010
- 5. Bode, A., Estévez, M.G., Varela, M., Vilar, J.A., 2015. Annual trend patterns of phytoplankton species abundance belie homogeneous taxonomical group responses to climate in the NE Atlantic upwelling. Mar. Environ. Res. 110, 81-91. https://doi.org/10.1016/j.marenvres.2015.07.017
- 6. Brewin, R.J.W., Sathyendranath, S., Hirata, T., Lavender, S.J., Barciela, R.M., Hardman-Mountford, N.J., 2010. A three-component model of phytoplankton size class for the Atlantic Ocean. Ecol. Model. 221, 1472-1483. https://doi.org/10.1016/j.ecolmodel.2010.02.014
- 7. Brierley, A.S., Kingsford, M.J., 2009. Impacts of Climate Change Review on Marine Organisms and Ecosystems. Curr. Biol. 19, R602-R614. https://doi.org/10.1016/j.cub.2009.05.046
- 8. Ciancia, E., Lacava, T., Pergola, N., Vellucci, V., Antoine, D., Satriano, V., Tramutoli, V., 2021. Quantifying the Variability of Phytoplankton Blooms in the NW Mediterranean Sea with the Robust Satellite Techniques (RST). Remote Sens. 13, 5151. https://doi.org/10.3390/rs13245151
- 9. Darecki, M., Ficek, D., Krężel, A., Ostrowska, M., Majchrowski, R., Woźniak, S.B., Bradtke, K., Dera, J., Woźniak, B., 2008. Algorithms for the remote sensing of the Baltic ecosystem (DE-SAMBEM). Part 2: empirical validation. Oceanologia 50 (4), 509-538.
- 10. Di Cicco, A., Sammartino, M., Marullo, S., Santoleri, R., 2017. Regional Empirical Algorithms for an Improved Identification of Phytoplankton Functional Types and Size Classes in the Mediterranean Sea Using Satellite Data. Front. Mar. Sci. 4, 126. https://doi.org/10.3389/fmars.2017.00126
- 11. Dierssen, H.M., 2010. Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate. PNAS 107 (40), 17073-17078. https://doi.org/10.1073/pnas.0913800107
- 12. Dohan, K., Maximenko, N., 2010. Monitoring ocean currents with satellite sensors. Oceanography 23 (4), 94-103. https://doi.org/10.5670/oceanog.2010.08
- 13. Ficek, D., Zapadka, T., Dera, J., 2011. Remote sensing reflectance of Pomeranian lakes and the Baltic. Oceanologia 53 (4), 959-970. https://doi.org/10.5697/oc.53-4.959
- 14. Finni, T., Kononen, K., Olsonen, R., Wallström, K., 2001. The history of cyanobacterial blooms in the Baltic Sea. AMBIO: J.Hum. Environ. 30 (4-5), 172-178. https://doi.org/10.1579/0044-7447-30.4.172
- 15. Gasiūnaité, Z.R., Cardoso, A.C., Heiskanen, A.-S., Henriksen, P., Kauppila, P., Olenina, I., Pilkaityté, R., Purina, I., Razinkovas, A., Sagert, S., Schubert, H., Wasmund, N., 2005. Seasonality of coastal phytoplankton in the Baltic Sea: Influence of salinity and eutrophication. Estuar. Coast. Shelf Sci. 65 (1-2), 235-252. https://doi.org/10.1016/j.ecss.2005.05.018
- 16. Goela, P.C., Danchenko, S., Icely, J.D., Lubian, L.M., Cristina, S., Newton, A., 2014. Using CHEMTAX to evaluate seasonal and interannual dynamics of the phytoplankton community off the South-west coast of Portugal. Estuar. Coast. Shelf Sci. 151, 112-123. https://doi.org/10.1016/j.ecss.2014.10.001
- 17. Gregg, W.W., Rousseaux, C.S., 2016. Directional and Spectral Irradiance in Ocean Models: Effects on Simulated Global Phytoplankton, Nutrients, and Primary Production. Front. Mar. Sci. 3, 240. https://doi.org/10.3389/fmars.2016.00240
- 18. Häder, D.P., Gao, K., 2018. Aquatic Ecosystems in a Changing Climate. CRC Press, Taylor & Francis Group. Hagerthey, S.E., Louda, J.W., Mongkronsri, P., 2006. Evaluation of pigment extraction methods and a recommended protocol for periphyton chlorophyll a determination and chemotaxonomic assessment. J. Phycol. 42 (5), 1125-1136. https://doi.org/10.1111/j.1529-8817.2006.00257.x
- 19. HELCOM, 1997. Manual for marine monitoring in the COMBINE programme of HELCOM, Part C. Programme for monitoring of eutrophication and its effects, Annex C-6, Phytoplankton species Oceanologia 66 (2024) 405-423 composition, abundance and biomass. Balt. Mar. Environ. Prot. Comiss., Helsinki 22 C6-1-C6-8.
- 20. HELCOM, 2009. Eutrophication in the Baltic Sea - An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Baltic Sea Environment Proc. 115B, New York, NY.
- 21. HELCOM, 2017. Manual for Marine Monitoring in the COMBINE Programme of HELCOM. Part C. Annex C-5. Phytoplankton Primary Production. https://helcom.fi/media/publications/Manual- for- Marine- Monitoring- in- the- COMBINE- Programme- of-HELCOM.pdf
- 22. HELCOM, 2018. State of the Baltic Sea - Second HELCOM holistic assessment 2011-2016. In: Baltic Sea Environment Proc, 155. https://helcom.fi/media/publications/BSEP155.pdf
- 23. HELCOM, 2018a. Sources and pathways of nutrients to the Baltic Sea. Baltic Sea Environment Proc. (153). https://www.helcom.fi/wp-content/uploads/2019/08/BSEP153.pdf
- 24. Hirata, T., Aiken, J., Hardman-Mountford, N.J., Smyth, T.J., Barlow, R.G., 2008. An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens. Environ. 112, 3153-3159. https://doi.org/10.1016/j.rse.2008.03.011
- 25. Hirata, T., Hardman-Mountford, N.J., Brewin, R.J.W., Aiken, J., Barlow, R.G., Suzuki, K., Isada, T., Howell, E., Hashioka, T., Noguci-Aita, M., Yamanaka, Y., 2011. Synoptic relationships between surface chlorophyll-a and diagnostic pigments specific to phytoplankton functional types. Biogeosciences 8, 311-327. https://doi.org/10.5194/bg-8-311-2011
- 26. Holm-Hansen, O., Lorenzen, C.J., Holmes, R.W., Strickland, J.D.H., 1965. Fluorometric Determination of Chlorophyll. ICES J. Mar. Sci. 30 (1), 3-15. https://doi.org/10.1093/icesjms/30.1.3
- 27. IOCCG, 2014. Phytoplankton functional types from space. In: Sathyendranath, S. (Ed.), Reports of the International Ocean-Colour Coordinating Group, No. 15. IOCCG, Dartmouth, Canada, 154. Jakobsson, M., Stranne, C., O’Regan, M., Greenwood, S.L., Gustafsson, B., Humborg, C., Weidner, E., 2019. Bathymetric properties of the Baltic Sea. Ocean Sci. 15, 905-924. https://doi.org/10.5194/os-15-905-2019
- 28. Jeffrey, S.W., Vesk, M., 1997. Introduction to marine phytoplankton and their pigment signatures. In: Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W. (Eds.), Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publ., Paris, 37-84.
- 29. Kahru, M., Elmgren, R., 2014. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 11, 3619-3633. https://doi.org/10.5194/bg-11-3619-2014
- 30. Kahru, M., Elmgren, R., Kaiser, J., Wasmund, N., Savchuk, O., 2020. Cyanobacterial blooms in the Baltic Sea: Correlations with environmental factors. Harmful Algae 92, 101739. https://doi.org/10.1016/j.hal.2019.101739
- 31. Kahru, M., Elmgren, R., Savchuk, O.P., 2016. Changing seasonality of the Baltic Sea. Biogeosciences 13, 1009-1018. https://doi.org/10.5194/bg- 13- 1009- 2016
- 32. Kang, J.-J., Min, J.-O., Kim, Y., Lee, C.-H., Yoo, H., Jang, H.-K., Kim, M.-J., Oh, H.-J., Lee, S.-H., 2021. Vertical Distribution of Phytoplankton Community and Pigment Production in the Yellow Sea and the East China Sea during the Late Summer Season. Water 13, 3321. https://doi.org/10.3390/w13233321
- 33. Klemas, V., 2012. Remote Sensing of Algal Blooms: An Overview with Case Studies. J. Coast. Res. 28 (Suppl), 1A. https://doi.org/10.2112/JCOASTRES-D-11-00051.1
- 34. Kowalczuk, P., Darecki, M., Zabłocka, M., Górecka, I., 2010. Validation of empirical and semi-analytical remote sensing algorithms for estimating absorption by Coloured Dissolved Organic Matter in the Baltic Sea from SeaWiFS and MODIS imagery. Oceanologia 52 (2), 171-196.
- 35. Kramer, S.J., Siegel, D.A., 2019. How Can Phytoplankton Pigments Be Best Used to Characterize Surface Ocean Phytoplankton Groups for Ocean Color Remote Sensing Algorithms? J. Geophys. Res.-Oceans 124 (11), 7557-7574. https://doi.org/10.1029/2019JC015604
- 36. Kratzer, S., Kowalczuk, P., Sagan, S., 2017. Bio-optical water quality assessment. In: Snoeijs, P., Schubert, H., Radziejewska, T. (Eds.), Biological Oceanography of the Baltic Sea. Springer, 527-545.
- 37. Krężel, A., Bradtke, K., Herman, A., 2015. Use of satellite data in monitoring of hydrophysical parameters of the Baltic Sea environment. Pol. Marit. Res. 22 (3), 36-42. https://doi.org/10.1515/pomr- 2015- 0054
- 38. Kutser, T., Metsamaa, L., Strömbeck, N., Vahtmäe, E., 2006. Monitoring cyanobacterial blooms by satellite remote sensing. Estuar. Coast. Shelf Sci. 67 (1-2), 303-312. https://doi.org/10.1016/j.ecss.2005.11.024
- 39. Li, Z-L., Tang, B.H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I.F., Sobrino, J.A., 2013. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 131,14-37. https://doi.org/10.1016/j.rse.2012.12.008
- 40. Latasa, M., 2007. Improving estimations of phytoplankton class abundances using CHEMTAX. Mar. Ecol. Prog. Ser. 329, 13-21. https://doi.org/10.3354/meps329013
- 41. MacIntyre, H.L., Kana, T.M., Anning, T., Geider, R.J., 2002. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J. Phycol. 38 (1), 17-38. https://doi.org/10.1046/j.1529-8817.2002.00094.x
- 42. Mackey, D.J., Blanchot, J., Higgins, H.W., Neveux, J., 2002. Phytoplankton abundances and community structure in the equatorial Pacific. Deep Sea Res. II 49 (13-14), 2561-2582. https://doi.org/10.1016/S0967-0645(02)00048-6
- 43. Mackey, M.D., Mackey, D.J., Higgins, H.W., Wright, S.W., 1996. CHEMTAX - a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 144, 265-283. https://doi.org/10.3354/meps144265
- 44. Majchrowski, R., 2001. The effect of lighting on the characteristics of light absorption by phytoplankton in the sea. Stud. i rozpr., Pom. Akad. Pedag. 1 (131) Słupsk (in Polish).
- 45. Majchrowski, R., Ostrowska, M., 2009. Mathematical description of vertical algal accessory pigment distributions in oceans - a brief presentation. Oceanologia 51 (4), 561-580. https://doi.org/10.5697/oc.51-4.561
- 46. Majchrowski, R., Stoń-Egiert, J., Ostrowska, M., Woźniak, B.,Ficek, D., Lednicka, B., Dera, J., 2007. Remote sensing of vertical phytoplankton pigment distributions in the Baltic: new mathematical expressions. Part 2: Accessory pigment distribution. Oceanologia 49 (4), 491-511.
- 47. Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M.E., García-Santos, G., Fernandes, R., Berger, M., 2012. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 91-101. https://doi.org/10.1016/j.rse.2011.09.026
- 48. Mantoura, R.F.C., Llewellyn, C.A., 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Anal. Chim. Acta 151, 297-314. https://doi.org/10.1016/S0003-2670(00)80092-6
- 49. Marty, J.C., Chiavérini, J., Pizay, M.D., Avril, B., 2002. Seasonal and interannual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time-series station (1991—1999). Deep Sea Res. II 49 (11), 1965-1985. https://doi.org/10.1016/S0967-0645(02)00022-X
- 50. Mazur-Marzec, H., Krężel, A., Kobos, J., Pliński, M., 2006. Toxic Nodularia spumigena blooms in the coastal waters of the Gulf of Gda´nsk: a ten-year survey. Oceanologia 48 (2), 255-273. 421
- 51. J. Stoń-Egiert, M. Ostrowska and R. Majchrowski Meler, J., Woźniak, S.B., Stoń-Egiert, J., 2020. Comparison of methods for indirectly estimating the phytoplankton population size structure and their preliminary modifications adapted to the specific conditions of the Baltic Sea. J. Marine Syst. 212, 103446. https://doi.org/10.1016/j.jmarsys.2020.103446
- 52. Miranda-Alvarez, C., González-Silvera, A., Santamaría-del-Angel, E., López-Calderón, J., Godínez, V.M., Sánchez-Velasco, L., Hernández-Walls, R., 2020. Phytoplankton pigments and community structure in the northeastern tropical pacific using HPLC-CHEMTAX analysis. J. Oceanogr. 76, 91-108. https://doi.org/10.1007/s10872-019-00528-3
- 53. Olenina, I., Hajdu, S., Edler, L., Andersson, A., Wasmund, N., Busch, S., Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen, P., Ledaine, I., Niemkiewicz, E., 2006. Biovolumes and size-classes of phytoplankton in the Baltic Sea. HELCOM Balt.Sea Environ. Proc. (106) 144.
- 54. Ostrowska, M., Ficek, D., Stoltmann, D., Sto´n-Egiert, J., Zdun, A., Kowalewski, M., Zapadka, T., Majchrowski, R., Pawlik, M., Dera, J., 2022. Ten years of remote sensing and analyses of the Baltic Sea primary production (2010-2019). Remote Sens. Appl. Soc. Environ. 26, 100715. https://doi.org/10.1016/j.rsase.2022.100715
- 55. Parsons, T.R., Maita, Y., Lalli, C.M., 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, 173 pp.
- 56. Pastuszak, M., Bryhn, A.C., Håkanson, L., Stålnacke, P., Zalewski, M., Wodzinowski, T., 2018. Reduction of nutrient emission from Polish territory into the Baltic Sea (1988-2014) confronted with real environmental needs and international requirements. Oceanol. Hydrobiol. Stud. I 47 (2), 140-166. https://doi.org/10.1515/ohs- 2018- 0015
- 57. Pinto, A.M.F., Sperling, E., Moreira, R.M., 2001. Chlorophyll-a determination via continuous measurement of plankton fluorescence:: methodology development. Water Res. 35 (16), 3977-3981. https://doi.org/10.1016/S0043-1354(01)00102-6
- 58. Platt, T., WhiteIII, G.N., Zhai, L., Sathyendranath, S., Roy, S.,2009. The phenology of phytoplankton blooms: Ecosystem indicators from remote sensing. Ecol. Modelling 220 (21), 3057-3069. https://doi.org/10.1016/j.ecolmodel.2008.11.022
- 59. Richardson, A.J., Schoeman, D.S., 2004. Climate impact on plankton ecosystems in the northeast Atlantic. Science 305 (5690), 1609-1612. https://doi.org/10.1126/science.1100958
- 60. Rousseaux, C.S., Gregg, W.W., 2015. Recent decadal trends in global phytoplankton composition. Glob. Biogeochemical Cy. 29, 1674-1688. https://doi.org/10.1002/2015GB005139
- 61. Roy, S., Llewellyn, C.A., Egeland, E.S., Johnsen, G., 2011. Phytoplankton pigments, characterization, chemotaxonomy and applications in oceanography. Cambridge Univ. Press, 845 pp.
- 62. Savchuk, O.P., 2018. Large-scale nutrient dynamics in the Baltic Sea, 1970-2016. Front. Mar. Sci. 5, 95. https://doi.org/10.3389/fmars.2018.00095
- 63. Schlüter, L., Behl, B., Striebel, M., Stibor, H., 2016. Comparing microscopic counts and pigment analyses in 46 phytoplankton communities from lakes of different trophic state. Freshwater Biol. 61, 1627-1639. https://doi.org/10.1111/fwb.12803
- 64. Schlüter, L., David, G.S., Jørgensen, N.O.G., Podduturi, R., Tucci, A., Dias, A.S., da Silva, R.J., 2018. Characterization of phytoplankton by pigment analysis and the detection of toxic cyanobacteria in reservoirs with aquaculture production. Aquaculture Environ. Interactions 10, 35-48. https://doi.org/10.3354/aei00256
- 65. Stoń, J., Kosakowska, A., 2002. Phytoplankton pigments designation - an application of RP-HPLC in qualitative and quantitative analysis. J. Appl. Phycol. 14 (3), 205-210. https://doi.org/10.1023/A:1019928411436
- 66. Stoń-Egiert, J., Kosakowska, A., 2005. RP-HPLC determination of phytoplankton pigments - comparison of calibration results for two columns. Mar. Biol. 147 (1), 251-260. https://doi.org/10.1007/s00227-004-1551-z
- 67. Stoń-Egiert, J., Łotocka, M., Ostrowska, M., Kosakowska, A., 2010. The influence of biotic factors on phytoplankton pigment composition and resources in Baltic ecosystems: new analytical re-sults. Oceanologia 52 (1), 101-125. https://doi.org/10.5697/oc.52-1.101
- 68. Stoń-Egiert, J., Majchrowski, R., Darecki, M., Kosakowska, A., Ostrowska, M., 2012. Influence of underwater light fields on pigment characteristics in the Baltic Sea - results of statistical analysis. Oceanologia 54 (1), 7-27. https://doi.org/10.5697/oc.54-1.007
- 69. Stoń-Egiert, J., Majchrowski, R., Ostrowska, M., 2019. Distributions of photosynthetic and photoprotecting pigment concentrations in the water column in the Baltic Sea: an improved mathematical description. Oceanologia 61 (1), 1-16. https://doi.org/10.1016/j.oceano.2018.08.004
- 70. Stoń-Egiert, J., Ostrowska, M., 2022. Long-term changes in phytoplankton pigment contents in the Baltic Sea: Trends and spatial variability during 20 years of investigations. Cont. Shelf Res. 236, 104666. https://doi.org/10.1016/j.csr.2022.104666
- 71. Stramska, M., Zuzewicz, A., 2013. Comparison of primary productivity estimates in the Baltic Sea based on the DESAMBEM algorithm with estimates based on other similar algorithms. Oceanologia 55 (1), 77-100. https://doi.org/10.5697/oc.55-1.077
- 72. Thamm, R., Schernewski, G., Wasmund, N., Neumann, T., 2004. Spatial phytoplankton pattern in the Baltic Sea. In: Schernewski, G., Wielgat, M. (Eds.), Baltic Sea typology. Coastline Rep., 4, 85-109.
- 73. Trees, C.C., Clark, R.D.K., Bidigare, R., Ondrusek, M.E., Mueller, J.L., 2000. Accessory pigments versus chlorophyll a concentrations within the euphotic zone: A ubiquitous relationship. Limnol. Oceanogr. 45 (5), 1130-1143. https://doi.org/10.4319/lo.2000.45.5.1130
- 74. Uitz, J., Claustre, H., Morel, A., Hooker, S.B., 2006. Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll. J. Geophys. Res. 111 (C8), C08005. https://doi.org/10.1029/2005JC003207
- 75. Uitz, J., Stramski, D., Reynolds, R.A., Dubranna, J., 2015. Assessing phytoplankton community composition from hyperspectral measure-ments of phytoplankton absorption coefficient and remote-sensing reflectance in open-ocean environments. Remote Sens. Environ. 171, 58-74. https://doi.org/10.1016/j.rse.2015.09.027
- 76. van Leeuwe, M.A., Brotas, V., Consalvey, M., Forster, R.M., Gillespie, D., Jesus, B., Roggeveld, J., Gieskes, W.W.C., 2008. Photoacclimation in microphytobenthos and the role of xanthophyll pigments. Europ. J. Phycol. 43 (2), 123-132. https://doi.org/10.1080/09670260701726119
- 77. Wang, L., Ou, L., Huang, K., Chai, C., Wang, Z., Wang, X., Jiang, T., 2018. Determination of the spatial and temporal variability of phytoplankton community structure in Daya Bay via HPLC-CHEMTAX pigment analysis. J. Ocean. Limnol. 36 (3), 750-760. https://doi.org/10.1007/s00343-018-7103-z
- 78. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., Sadkowiak, B., 2019. Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change. Mar. Ecol. Prog. Ser. 622, 1-16. https://doi.org/10.3354/meps12994
- 79. Wasmund, N., Breuel, G., Edler, L., Kuosa, H., Olsonen, R., Schultz, H., Pys-Wolska, M., Wrzołek, L., 1996. Baltic proper: Pelagic biology. Third periodic assessment of the state of the marine environment of the Baltic Sea, 1989-93: background document. Balt. Sea Environ. Proc. 64B, HELCOM, 89-93.
- 80. Wasmund, N., Nausch, G., Matthäus, W., 1998. Phytoplankton spring blooms in the southern Baltic Sea — spatio-temporal development and long-term trends. J. Plankton Res. 20 (6), 1099-1117. https://doi.org/10.1093/plankt/20.6.1099
- 81. Wasmund, N., Uhlig, S., 2003. Phytoplankton trends in the Baltic Sea. ICES J. Mar. Sci. 60 (2), 177-186. https://doi.org/10.1016/S1054-3139(02)00280-1
- 82. Wasmund, N., Tuimala, J., Suikkanen, S, Vandepitte, L., Kraberg, A., 2011. Long-term trends in phytoplankton composition in the western and central Baltic Sea. J. Marine Sys. 87, 145-159. https://doi.org/10.1016/j.jmarsys.2011.03.010
- 83. Wänstrand, I., Snoeijs, P.J.M., 2006. Phytoplankton community dynamics assessed by ships-of-opportunity sampling in the northern Baltic Sea: A comparison of HPLC pigment analysis and cel counts. Est. Coast. Shelf Sci. 66 (1), 135-146. https://doi.org/10.1016/j.ecss.2005.08.003
- 84. Welschmeyer, N.A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 39 (8), 1985-1992. https://doi.org/10.4319/lo.1994.39.8.1985
- 85. Wernberg, T., Russell, B.D., Moore, P.J., Ling, S.D., Smale, D.A., Campbell, A., Coleman, M.A., Steinberg, P.D., Kendrick, G.A., Connell, S.D., 2011. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. Exp. Mar. Biol. Ecol. 400 (1-2), 7-16. https://doi.org/10.1016/j.jembe.2011.02.021
- 86. Woźniak, M., Bradtke, K., Darecki, M., Krężel, A., 2016a. Empirical model for phycocyanin concentration estimation as an indicator of cyanobacterial bloom in the optically complex coastal waters of the Baltic Sea. Remote Sens. 8 (3), 212. https://doi.org/10.3390/rs8030212
- 87. Woźniak, S.B., Darecki, M., Zabłocka, M., Burska, D., Dera, J., 2016b. New simple statistical formulas for estimating Surface concentrations of suspended particulate matter (SPM) and par-ticulate organic carbon (POC) from remote-sensing reflectance in the southern Baltic Sea. Oceanologia 58 (3), 161-175. https://doi.org/10.1016/j.oceano.2016.03.002
- 88. Woźniak, B., Dera, J., 2007. Light Absorption in Sea Water. Springer, New York, 454 pp.
- 89. Woźniak, B., Majchrowski, R., Ostrowska, M., Ficek, D., Kunicka, J., Dera, J., 2007. Remote sensing of vertical phytoplankton pigment distributions in the Baltic: new mathematical expressions. Part 3: Nonphotosynthetic pigment absorption factor. Oceanologia 49 (4), 513-526.
- 90. Woźniak, M., Bradtke, K.M., Krężel, A., 2014. Comparison of satellite chlorophyll a algorithms for the Baltic Sea. J. Appl. Remote Sens. 8 (1), 083605. https://doi.org/10.1117/1.JRS.8.083605
- 91. Woźniak, S.B., 2014. Simple statistical formulas for estimating biogeochemical properties of suspended particulate matter in the southern Baltic Sea potentially useful for optical remote sensing applications. Oceanologia 56 (1), 7-39. https://doi.org/10.5697/oc.56-1.007
- 92. Wright, S.W., van der Enden, R.L., 2000. Phytoplankton community structure and stocks in the East Antarctic marginal ice zone (BROKE survey, January-March 1996) determined by CHEM-TAX analysis of HPLC pigment signatures. Deep Sea Res. II 47 (12-13), 2363-2400. https://doi.org/10.1016/S0967-0645(00)00029-1
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b156497-179c-4a42-9357-d01db0619d61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.