Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Streamflow modelling is a very important process in the management and planning of water resources. However, complex processes associated with the hydro-meteorological variables, such as non-stationarity, non-linearity, and randomness, make the streamflow prediction chaotic. The study developed multi linear regression (MLR) and back propagation neural network (BPNN) models to predict the streamflow of Wadi Hounet sub-basin in north-western Algeria using monthly hydrometric data recorded between July 1983 and May 2016. The climatological inputs data are rainfall (P) and reference evapotranspiration (ETo) on a monthly scale. The outcomes for both BPNN and MLR models were evaluated using three statistical measurements: Nash–Sutcliffe efficiency coefficient (NSE), the coefficient of correlation (R) and root mean square error (RMSE). Predictive results revealed that the BPNN model exhibited good performance and accuracy in the prediction of streamflow over the MLR model during both training and validation phases. The outcomes demonstrated that BPNN-4 is the best performing model with the values of 0.885, 0.941 and 0.05 for NSE, R and RMSE, respectively. The highest NSE and R values and the lowest RMSE for both training and validation are an indication of the best network. Therefore, the BPNN model provides better prediction of the Hounet streamflow due to its capability to deal with complex nonlinearity procedures.
Wydawca
Czasopismo
Rocznik
Tom
Strony
16--24
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- University Hassiba Benbouali of Chlef, Faculty of Nature and Life Sciences, Laboratory of Water and Environment, P. Box 78C, Ouled Fares Chlef 02180, Algeria
- University Mohamed Boudiaf of M’sila, Faculty of Sciences, M’sila, Algeria
autor
- University Hassiba Benbouali of Chlef, Faculty of Nature and Life Sciences, Laboratory of Water and Environment, P. Box 78C, Ouled Fares Chlef 02180, Algeria
autor
- University of Sidi Bel-Abbès, Faculty of Technology, Laboratory of Civil Engineering and Environmental, Cité Ben M’Hidi, Sidi-Bel-Abbès, Algeria
Bibliografia
- ABBA S., HADI S.J., ABDULLAHI J. 2017. River water modelling prediction using multi-linear regression, artificial neural network, and adaptive neuro-fuzzy inference system techniques. Procedia Computer Science. No. 120 p. 75–82. DOI 10.1016/j.procs.2017.11.212.
- ABBA S., USMAN A., SELIN I. 2020. Simulation for response surface in the HPLC optimization method development using artificial intelligence models: A data-driven approach. Chemometrics and Intelligent Laboratory Systems. No. 201, 104007. DOI 10.1016/j.chemolab.2020.104007.
- ABBA S.I., ELKIRAN G. 2017. Effluent prediction of chemical oxygen demand from the wastewater treatment plant using artificial neural network application. Procedia Computer Science. No. 120 p. 156–163. DOI 10.1016/j.procs.2017.11. 223.
- ACHITE M., BUTTAFUOCO G., TOUBAL K., LUCA F. 2017. Precipitation spatial variability and dry areas temporal stability for different elevation classes in the Macta basin (Algeria). Environmental Earth Sciences. No. 76(13) Art. No. 458.
- ACHITE M., TOUAIBIA B. 2014. Secheresse et gestion des ressources en eau dans le bassin versant de la mina, Algerie [Drought and water managment in the wadi mina basin, Algeria]. Production scientifique – Communications. No. 1 p. 371.
- ALLEN R.G., PEREIRA L.S., RAES D., SMITH M. 1998. Crop evapotranspiration (guidelines for computing crop water requirements). Rome. FAO Irrigation and drainage. Food and Agriculture Organization of the United Nations. No. 56(97) pp. 300.
- ASADISAGHANDI J., TAHMASEBI P. 2011. Comparative evaluation of back-propagation neural network learning algorithms and empirical correlations for prediction of oil PVT properties in Iran oilfields. Journal of Petroleum Science and Engineering. Vol. 78(2) p. 464–475. DOI 10.1016/j.petrol.2011.06.024.
- BAAHMED D., OUDIN L., ERRIH M. 2015. Current runoff variations in the Macta catchment (Algeria): Is climate the sole factor? Hydrological Sciences Journal. Vol. 60(7–8) p. 1331–1339. DOI 10.1080/02626667.2014.975708.
- BAKRETI A., BRAUD I., LEBLOIS E., BENALI A. 2013. Analyse conjointe des régimes pluviométriques et hydrologiques dans le bassin de la Tafna (Algérie Occidentale) [Combined rainfall and discharge analysis in the Tafna basin, western Algeria]. Hydrological Sciences Journal. Vol. 58(1) p. 133–151. DOI 10.1080/02626667.2012.745080.
- BOULARIAH O., MEDDI M., LONGOBARDI A. 2019. Assessment of prediction performances of stochastic and conceptual hydrological models: monthly stream flow prediction in northwestern Algeria. Arabian Journal of Geosciences. Vol. 12(24). Art. No. 792.
- DAWSON C.W., WILBY R. 1998. An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences Journal. Vol. 43(1) p. 47–66. DOI 10.1080/02626669809 492102.
- ELKIRAN G., NOURANI V., ABBA S. 2019. Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach. Journal of Hydrology. Vol. 577. Art. ID 123962. DOI 10.1016/j.jhydrol.2019. 123962.
- ELKIRAN G., NOURANI V., ABBA S., ABDULLAHI J. 2018. Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river. Global Journal of Environmental Science and Management. Vol. 4(4) p. 439–450. DOI 10.22034/gjesm.2018.04.005.
- FOTOVATIKHAH F., HERRERA M., SHAMSHIRBAND S., CHAU K.-W., FAIZOLLAHZADEH ARDABILI S., PIRAN M.J. 2018. Survey of computational intelligence as basis to big flood management: Challenges, research directions and future work. Engineering Applications of Computational Fluid Mechanics. Vol. 12(1) p. 411–437. DOI 10.1080/19942060. 2018.1448896.
- GAYA M.S., ABBA S.I., ABDU A.M., TUKUR A.I., SALEH M.A., ESMAILI P., WAHAB N.A. 2020. Estimation of water quality index using artificial intelligence approaches and multi-linear regression. IAES International Journal of Artificial Intelligence (IJ-AI). Vol. 9. No. 1 p. 126–134. DOI 10.11591/ ijai.v9.i1.pp126-134.
- HOMSI R., SHIRU M.S., SHAHID S., ISMAIL T., HARUN S.B., AL-ANSARI N., CHAU K.-W., YASEEN Z.M. 2020. Precipitation projection using a CMIP5 GCM ensemble model: A regional investigation of Syria. Engineering Applications of Computational Fluid Mechanics, Vol. 14(1) p. 90–106. DOI 10.1080/19942060.2019.1683076.
- KISI O., SHIRI J., TOMBUL M. 2013. Modeling rainfall-runoff process using soft computing techniques. Computers and Geosciences. No 51(1) p. 108–117. DOI 10.1016/j.cageo. 2012.07.001.
- LIU M., WANG M., WAN J., LI D. 2013. Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the recognition of orange beverage and Chinese vinegar. Sensors and Actuators B: Chemical. Vol. 177 p. 970–980. DOI 10.1016/j.snb.2012.11.071.
- MEDDI H., MEDDI M. 2007. Variabilité spatiale et temporelle des précipitations du Nord-Ouest de l’Algérie [Spatial and temporal variability of precipitation in northwestern Algeria ]. Géographia Technica. No. 2 p. 49–55.
- MEDDI M., HUBERT P. 2003. Impact de la modification du régime pluviométrique sur les ressources en eau du Nord-Ouest de l'Algérie [Impact of modification of rainfall system on the water resources of the north western Algeria]. In: Hydrology of the Mediterranean and Semiarid Regions. Proceedings of an international symposium. 1–4 April 2003. Montpellier. IAHS Publication. No. 278 p. 229–235.
- MEDDI M., TALIA A., MARTIN C. 2009. Évolution récente des conditions climatiques et des écoulements sur le bassin versant de la Macta (Nord-Ouest de l'Algérie) [Recent evolution of climatic conditions and flows in the Macta watershed (North waestern Algeria)]. Physio-Géo. Géographie physique et environnement. No 3 p. 61–84. DOI 10.4000/physio-geo.686.
- MEDDI M.M., ASSANI A.A., MEDDI H. 2010. Temporal variability of annual rainfall in the Macta and Tafna catchments, North western Algeria. Water Resources Management. Vol. 24(14) p. 3817–3833. DOI 10.1007/s11269-010-9635-7.
- MOAZENZADEH R., MOHAMMADI B., SHAMSHIRBAND S., CHAU K.-W. 2018. Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran. Engineering Applications of Computational Fluid Mechanics. Vol. 12(1) p. 584–597. DOI 10.1080/19942060.2018. 1482476.
- MORIASI D.N., ARNOLD J.G., VAN LIEW M.W., BINGNER R. L., HARMEL R.D., VEITH T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. Vol. 50(3) p. 885–900. DOI 10.13031/2013.23153.
- MOSAVI A., OZTURK P., CHAU K.-W. 2018. Flood prediction using machine learning models: Literature review. Water. Vol. 10(11), 1536 pp. 40. DOI 10.3390/w10111536.
- NOURANI V., ELKIRAN G., ABBA S. 2018. Wastewater treatment plant performance analysis using artificial intelligence – an ensemble approach. Water Science and Technology. Vol. 78(10) p. 2064–2076. DOI 10.2166/wst.2018.477.
- NOURANI V., KALANTARI O. 2010. Integrated artificial neural network for spatiotemporal modeling of rainfall–runoff–sediment processes. Environmental Engineering Science. Vol. 27(5) p. 411–422. DOI 10.1089/ees.2009.0353.
- NOURANI V., PAKNEZHAD N.J., SHARGHI E., KHOSRAVI A. 2019. Estimation of prediction interval in ANN-based multi-GCMs downscaling of hydro-climatologic parameters. Journal of Hydrology. Vol. 579, 124226. DOI 10.1016/j.jhydrol.2019. 124226.
- PHAM Q.B., ABBA S.I., USMAN A.G., LINH N.T.T., GUPTA V., MALIK A., COSTACHE R., VO N.D., TRI D.Q. 2019. Potential of hybrid data-intelligence algorithms for multi-station modelling of rainfall. Water Resources Management. Vol. 33(15) p. 5067–5087.
- SANTHI C., ARNOLD J.G., WILLIAMS J.R., DUGAS W.A., SRINIVASAN R., HAUCK L. M. 2001. Validation of the swat model on a large river basin with point and nonpoint sources 1. JAWRA Journal of the American Water Resources Association. Vol. 37(5) p. 1169–1188. DOI 10.1111/j.1752-1688.2001.tb03630.x.
- SARGENT R.G. 2010. Verification and validation of simulation models. In: Proceedings of the 2010 winter simulation conference. Eds. S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, M. Fu. IEEE p. 166–183. DOI 10.1109/WSC.2010. 5679166.
- SHAMSHIRBAND S., HASHEMI S., SALIMI H., SAMADIANFARD S., ASADI E., SHADKANI S., KARGAR K., MOSAVI A., NABIPOUR N., CHAU K.-W. 2020. Predicting standardized streamflow index for hydrological drought using machine learning models. Engineering Applications of Computational Fluid Mechanics. Vol. 14(1) p. 339–350. DOI 10.1080/19942060. 2020.1715844.
- SHARGHI E., NOURANI V., MOLAJOU A., NAJAFI H. 2019. Conjunction of emotional ANN (EANN) and wavelet transform for rainfall-runoff modeling. Journal of Hydroinformatics. Vol. 21(1) p. 136–152. DOI 10.2166/ hydro.2018.054.
- SHARGHI E., NOURANI V., NAJAFI H., MOLAJOU A. 2018. Emotional ANN (EANN) and wavelet-ANN (WANN) approaches for Markovian and seasonal based modeling of rainfall-runoff process. Water Resources Management. Vol. 32(10) p. 3441–3456. DOI 10.1007/s11269-018-2000-y.
- YASEEN Z.M., SULAIMAN S.O., DEO R.C., CHAU K.-W. 2019. An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. Journal of Hydrology. Vol. 569 p. 387–408. DOI 10.1016/ j.jhydrol.2018.11.069.
- ZOUNEMAT-KERMANI M., KISI O., RAJAEE T. 2013. Performance of radial basis and LM-feed forward artificial neural networks for predicting daily watershed runoff. Applied Soft Computing. Vol. 13(12) p. 4633–4644. DOI 10.1016/j.asoc. 2013. 07.007.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b13c3f3-8167-42a6-b8be-953792ec69b1