PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The dynamic behavior of the multi-frequency vibrating screening

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article aimed to compare the results of the experimental and the simulation research on the dynamic behaviour of the developed multi-frequency vibrating screen prototype. A simulation model of the screen and a test stand for trajectory research have been developed. Simulations of the screen motion were carried out and the results obtained from measurements on the test stand were compared. It was noticed that for the angular ratio of the rotational speeds equal to 1 under their reverse synchronization for the two rotary vibrators exciting the analyzed screen the best conditions were obtained for the good segregation of the granular layer on the screen.
Słowa kluczowe
Rocznik
Tom
Strony
67--98
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr., wz.
Twórcy
  • Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, Lodz, Poland
  • Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, Lodz, Poland
  • Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, Lodz, Poland
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
  • Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
  • Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
  • Łukasiewicz Research Network – Lodz Institute of Technology, Lodz, Poland
  • GoudenKorrel S.A, Kaliska, Poland
  • Spoldzielnia Inwalidow ZGODA, Konstantynow Lodzki, Poland
Bibliografia
  • [1] Gursky V.R., Kuzio I., Krot P., Zimroz R.: Energy-Saving Inertial Drive for DualFrequency Excitation of Vibrating Machines, Energies, 14, 1, 71, 2021. https://doi.org/10.3390/en14010071.
  • [2] Kumar D., Kumar D.: Chapter 4 - Coal Sizing. Kumar, D., Kumar, D. (eds.), Sustainable Management of Coal Preparation. Woodhead Publishing, Walnut, St Philadelphia, PA, USA, 2018, pp. 49–68.
  • [3] Wills B.A., Finch J.A.: Chapter 8 -Industrial Screening. Wills, B.A., Finch, J.A., (eds.), Wills’ Mineral Processing Technology, 8th ed. Butterworth-Heinemann, Oxford, UK, 2016, pp.181–197.
  • [4] Simonyan K.J., Yiljep Y.: Investigating grain separation and cleaning efficiency distribution of a conventional stationary rasp-bar sorghum thresher. Agric. Eng. Int. CIGR Ej. 10, 2008, pp. 1–10.
  • [5] Aipov R., Linenko A., Badretdinov I., Tuktarov M., Akchurin S.: Research of the work of the sieve mill of a grain-cleaning machine with a linear asynchronous drive. Math. Biosci. Eng. 17, 4, 2020, pp. 4348–4363, DOI:10.3934/mbe.2020240.
  • [6] Giyevskiy A.M., Orobinsky V.I, Tarasenko A.P., Chernyshov A.V., Kurilov D.O., Substantiation of basic scheme of grain cleaning machine for preparation of agricultural crops seeds. IOP Conf. Ser. Mater. Sci. Eng. 327, 4, 2018. DOI:10.1088/1757- 899X/327/4/042035.
  • [7] Vasylkovskyi O., Vasylkovska K., Moroz S., Sviren M., Storozhyk L.: The influence of basic parameters of separating conveyor operation on grain cleaning quality. INMATEH, 57, 1, 2019, 63–70, https://doi.org/10.35633/INMATEH_57.
  • [8] Ma L., Song X., Wang H., Xu X., Han T., Guo H.: Screening Kinematics Analysis of Cleaning Organs, and Extractives. IOP Conf. Ser. Mater. Sci. Eng. 452, 4, 04212, 2018. DOI:10.1088/1757-899X/452/4/042123.
  • [9] Shevtsov I.V., Beznosov V.A.: Drive unit for sieve mills of grain cleaning machines. Agrar. Vestn. Ural. 2, 2014, pp. 43–45.
  • [10] Aradwad P.P., Sinha J.P., Kumar T.V.A., Yadav R.S., Samuel D.V.K,: Development of solar powered screen cleaner. Indian J. Agric. Sci. 88, 12, 2018, pp. 1914–1919.
  • [11] Yarullin R., Aipov R., Gabitov I., Linenko A., Akchurin S., Mudarisov S., Khasanov E., Rakhimov Z., Masalimov I.: Adjustable driver of grain cleaning vibro-machine with vertical axis of eccentric masses rotation. J. Eng. Appl. Sci., 13, 8SI, 2018, pp. 6398–6406, DOI:10.36478/jeasci.2018.6398.6406.
  • [12] Linenko A.V., Gabitov I.I., Baynazarov V.G., Tuktarov M.F., Aipov R.S,, Akchurin S.V, Kamalov T.I., Badretdinov I.D., Leontiev D.S., Vokhmin V.S.: The mechatronic module “linear electric drive—sieve boot” intelligent control system of grain cleaner. J. Balk. Tribol. Assoc., 25, 3, 2019, pp. 708–717.
  • [13] Neyman L.A., Neyman V.Y.: Dynamic model of a vibratory electromechanical system with spring linkage. In Proceedings of the 2016 11th International Forum on Strategic Technology, IFOST, Novosibirsk, Russia, 1–3 June 2016, pp. 23–27.
  • [14] Lawinska K., Modrzewski R.: Analysis of sieve holes blocking in a vibrating screen and a rotary and drum screen. Physicochem. Probl. Miner. Process. 53, 2017, pp.812–828.
  • [15] Li H., Li Y., Guo F., Zhao Z., Xu L.: CFD–DEM simulation of material motion in airand-screen cleaning device. Comput. Electron. Agric., 88, 2012, pp. 111–119, DOI:10.1016/j.compag.2012.07.006.
  • [16] Li H., Li Y., Tang Z., Xu L., Zhao Z.: Numerical simulation and analysis of vibration screening based on EDEM. Trans. CSAE, 27, 5, 2011, pp. 117–121, DOI:10.3969/j.issn.1002-6819.2011.05.019.
  • [17] Elskamp F., Kruggel-Emden H., DEM simulations of screening processes under the influence of moisture. Chem. Eng. Res. Des., 136, 2018, pp. 593–609, DOI:10.1016/j.cherd.2018.06.022.
  • [18] Elskamp F., Kruggel-Emden H.: Extension of process models to predict batch screening results under the influence of moisture based on DEM simulations. Powder Technol., 342, 2019, pp. 698–713, DOI:10.1016/j.powtec.2018.10.039.
  • [19] Yan H., Li Y., Fuan F., Peng F., Yang X., Hou X.: Analysis of the Screening Accuracy of a Linear Vibrating Screen with a Multi-layer Screen Mesh. Stroj. Vestn. J. Mech. Eng., 66, 5, 2020, pp. 289–299, DOI:10.5545/sv-jme.2019.6523.
  • [20] Peng L., Feng H., Wang Z., Wang H., Yang H., Huang H.: Screening Mechanism and Properties of a Cantilevered Vibrating Sieve for Particles Processing. Appl. Sci., 9, 22, 4911, 2019, DOI: 10.3390/app9224911.
  • [21] Szufa S., Piersa P., Junga R., Blaszczuk A., Modlinski N., Marczak-Grzesik M., Sobek S., Adrian L., Dzikuc M.: Numerical modeling of the co-firing process of an in-situ steamtorrefied biomass with coal in a 230 MW industrial-scale boiler. Energy, vol. 263E, 2023, 125918, DOI: 10.1016/j.energy.2022.125918.
  • [22] Rostocki A., Ławińska K., Modrzewski R., Siegień G., Hejft R., Obraniak A., Methods for Treatment of Animal and Plant-Based Biomass Waste, Fibers Text. East. Eur. 30, 4, 2022, pp. 32-42. DOI: 10.2478/ftee-2022-0031.
  • [23] Piersa P., Szufa S., Czerwińska J., Ünyay H., Adrian Ł., Wielgosinski G., Obraniak A., Lewandowska W., Marczak-Grzesik M., Dzikuć M., Romanowska-Duda Z., Olejnik T.P.: Pine Wood and Sewage Sludge Torrefaction Process for Production Renewable Solid Biofuels and Biochar as Carbon Carrier for Fertilizers. Energies, 14, 23, 8176, 2021, DOI: 10.3390/en14238176.
  • [24] Li L., Chen X.: Multi-frequency Vibration Synchronization and Stability of the Nonlinear Screening System. IEEE Access, 7, 2019, pp. 171032-171045, DOI:10.1109/ACCESS.2019.2955980.
  • [25] Liu Y., Meng G., Suo S., Li D., Wang A., Cheng X., Yang J.: Spring Failure Analysis of Mining Vibrating Screens: Numerical and Experimental Studies. Appl. Sci., 9, 16, 3224, 2019, DOI: 10.3390/app9163224.
  • [26] Lawinska K., Wodzinski P., Modrzewski R.: Verification of the mathematical model of the screen blocking process, Powder Technol. 256, 2014, pp. 506-511.
  • [27] Dang T.N.: Modeling and Dynamic Simulation of a Multi-slope Vibrating Screen to Determine the Basic Working Parameters. In: Nguyen, D.C., Vu, N.P., Long, B.T., Puta, H., Sattler, KU. (eds) Advances in Engineering Research and Application. ICERA 2022. Lecture Notes in Networks and Systems, 602. Springer, Cham. 2023 DOI:10.1007/978-3- 031-22200-9_72.
  • [28] Sun T., Wu B., Zhang H., Han Y., Liu H., Zhang Y.: Discrete element simulation of particle flow and separation in a vibrating screen with variable rectangular hole screen, Powder Technol. 434, 119305, 2024, DOI: 10.1016/j.powtec.2023.119305.
  • [29] Tian S., Wang Y., Zhao W., Zhang Q., Wang S., Lang J., Xia R., Song J., Song W., Comparative study on the screening performance of a vibrating screen with and without a kneading device, based on the discrete element method, Powder Technol. 434, 119301, 2023, DOI: 10.1016/j.powtec.2023.119301.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b0e6275-f026-4ae4-995a-6ee810ef8890
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.