Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, a greenhouse experiment was carried out from April to July 2024 to assess the effectiveness of four ornamental plants in removing heavy metals from the polluted soil surrounding the Zenica steel mill in Bosnia and Herzegovina. The selected ornamental plants - blue mink (Ageratum houstonianum Mill.), marigold (Tagetes erecta L.), impatiens (Impatiens walleriana Hook. f.), and begonia (Begonia semperflorens - Cultorum Group) - demonstrated potential for addressing soil contamination. These plants were cultivated in grow bags filled with soil collected from different areas surrounding the Zenica steel mill. The concentrations of heavy metals (Cu, Zn, Pb, Cd, Cr, Mn, and Fe) in both soil and plant samples were analyzed using atomic absorption spectrophotometry. The findings of this study reveal that soils adjacent to the Zenica steel mill are heavily contaminated with Zn, Cd, and Pb and also contain notable levels of Mn and Fe. The bioaccumulation factor (BAF) and translocation factor (TF) were calculated to determine the potential of the selected ornamental plants to uptake and transport heavy metals from the soil to its aboveground parts. The BAF values for all heavy metals in all studied plant species were consistently below 1, indicating a limited capacity to remove heavy metals from the soil. This limited effectiveness can be attributed, among other factors, to the high pH levels of the tested soils. Despite the limitation, the findings revealed a significant difference in the plants’ capacity to uptake and accumulate heavy metal ions from the examined soils. Among the tested plants, blue mink demonstrated the highest ability to absorb Cu, Pb, Cr and Fe, while the highest concentrations of Zn and Cd were found in begonia.
Czasopismo
Rocznik
Tom
Strony
16--23
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- University of Sarajevo, Faculty of Agriculture and Food Sciences, Department for Plant Physiology, Bosnia and Herzegovina
autor
- University of Sarajevo, Faculty of Agriculture and Food Sciences, Department for Plant Physiology, Bosnia and Herzegovina
autor
- University of Sarajevo, Faculty of Science, Department for Botany, Bosnia and Herzegovina
autor
- University of Sarajevo, Faculty of Science, Department for Botany, Bosnia and Herzegovina
autor
- National Museum of Bosnia and Herzegovina, Department for Botany, Bosnia and Herzegovina
autor
- University of Sarajevo, Faculty of Forestry, Department for Plant Physiology, Bosnia and Herzegovina
Bibliografia
- 1. Adnan, M., Xiao, B., Ali, M.U., Xiao, P., Zhao, P., Wang, H. & Bibi, S. (2024). Heavy metals pollution from smelting activities: A threat to soil and groundwater. Ecotoxicology and Environmental Safety, 274, 116189. DOI:10.1016/j.ecoenv.2024.116189
- 2. Adnan, M., Xiao, B., Xiao, P., Zhao, P., Li, R. & Bibi, S. (2022). Research progress on heavy metals pollution in the soil of smelting sites in China. Toxics, 10(5), 231. DOI:10.3390/toxics10050
- 3. Adnan, M., Zhao, P., Xiao, B., Ali, M.U. & Xiao, P. (2025). Heavy metal pollution and source analysis of soils around abandoned Pb/Zn smelting sites: Environmental risks and fractionation analysis. Environmental Technology & Innovation, 38, 104084. DOI:10.1016/j.eti.2025.104084
- 4. Alghamdi, S.A. & El-Zohri, M. (2024). Phytoremediation characterization of heavy metals by some native plants at anthropogenic polluted sites in Jeddah, Saudi Arabia. Resources, 13(7), 98. DOI:10.3390/resources13070098
- 5. Ali, J., Amna, Mahmood, T., Hayat, H., Afridi, M.S., Ali, F. & Chaudhary, H.J. (2018). Phytoextraction of Cr by maize (Zea mays L.). The role of plant growth promoting endophyte and citric acid under polluted soil. Archives of Environmental Protection, 44(2), pp. 73-82. DOI:10.24425/119705
- 6. Bonanno, G., Vymazal, J. & Cirelli, G.L. (2018). Translocation, accumulation and bioindication of trace elements in wetland plants. Science of the Total Environment, 631-632, pp. 252-261. DOI:10.1016/j.scitotenv.2018.03.039
- 7. Bosiacki, M., Kleiber, T. & Kaczmarek, J. (2013). Evaluation of suitability of Amaranthus caudatus L. and Ricinus communis L. in phytoextraction of cadmium and lead from contaminated substrates. Archives of Environmental Protection, 39(3), pp. 47-59. DOI:10.2478/aep-2013-0022
- 8. Egnér, H., Riehm, H. & Domingo, W.R. (1960). Investigations on soil chemical analysis as a basis of the evaluation of plant nutrient status of soils II. Chemical extraction methods for phosphorus and potassium determination. Kungliga Lantbrukshögskolans Annaler, Sweden, 26, pp. 199-215. (in German)
- 9. Ejaz, U., Khan, S.M., Khalid, N., Ahmad, Z., Jehangir, S., Rizvi, F.Z., Lho, L.H., Han, H. & Raposa, A. (2023). Detoxifying the heavy metals: a multipronged study of tolerance strategies against heavy metals toxicity in plants. Frontiers in Plant Science, 14, 1154571. DOI:10.3389/fpls.2023.1154571
- 10. Gawroński, S., Łutczyk, G., Szulc, W. & Rutkowska, A. (2022). Urban mining: Phytoextraction of noble and rare earth elements from urban soils. Archives of Environmental Protection, 48(2), pp. 24-33. DOI:10.24425/aep.2022.140763
- 11. Hamzah Saleem, M., Usman, K., Rizwan, M., Al Jabri, H. & Alsafran, M. (2023). Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Frontiers in Plant Science, 13, 1033092. DOI:10.3389/fpls.2022.1033092
- 12. International Standard ISO (1995). ISO 11466: Soil quality - Extraction of trace elements soluble in aqua regia. Geneva, Switzerland.
- 13. International Standard ISO (1998). ISO 11047: Soil quality - Determination of cadmium, chromium, cobalt, copper, lead, manganese, nickel and zinc - Flame and electrothermal atomic absorption spectrometric methods. Geneva, Switzerland.
- 14. International Standard ISO (1998). ISO 14235: Soil quality - Determination of organic carbon in soil by sulfochromic oxidation. Geneva, Switzerland.
- 15. International Standard ISO (2021). ISO 10390: Soil quality - Determination of pH. Geneva, Switzerland.
- 16. Jutsz, A. & Gnida, A. (2015). Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals. Archives of Environmental Protection, 41(4), pp. 104-114. DOI:10.1515/aep-2015-0045
- 17. Kabata-Pendias A. & Pendias H. (2001). Trace Elements in Soils and Plants. CRC Press, Boca Raton, 2001.
- 18. Kastori, R., Petrović, N. & Arsenijević-Maksimović, I. (1997). Heavy Metals in the Environment. Naučni institut za ratarstvo i povrtarstvo, Novi Sad, 1997. (in Serbian).
- 19. Kniuipytė, I., Dikšaitytė, A., Praspaliauskas, M., Pedišius, N. & Žaltauskaitė, J. (2023). Oilseed rape (Brassica napus L.) potential to remediate Cd contaminated soil under different soil water content. Journal of Environmental Management, 325, 116627. DOI:10.1016/j.jenvman.2022.116627
- 20. Kuang, X., Wang, W., Hu, J., Liu, W. & Zeng, W. (2022). Subcellular distribution and chemical forms of manganese in Daucus carota in relation to its tolerance. Frontiers in Plant Science, 13, 947882. DOI:10.3389/fpls.2022.947882
- 21. Lin, H., Wang, Z., Liu, C. & Dong, Y. (2022). Technologies for removing heavy metal from contaminated soils on farmland: A review. Chemosfere, 305, 135457. DOI:10.1016/j.chemosphere.2022.135457
- 22. Lisjak, M., Špoljarević, M., Agić, D. & Andrić, L. (2019). Practicum-Plant Physiology. Faculty of Agriculture in Osijek, Osijek, 2019. (in Croatian)
- 23. Meng, Y., Xiang, C., Huo, J., Shen, S., Tang, Y., Wu, L. (2023). Toxicity effects of zinc supply on growth revealed by physiological and transcriptomic evidences in sweet potato (Ipomoea batatas (L.) Lam). Scientific Reports, 13, 19203. DOI:10.1038/s41598-023-46504-2
- 24. Official Gazette of FBiH (2009). Rulebook on determination of allowable quantities of harmful and hazardous substances in soils of Federation of Bosnia and Herzegovina and methods for their testing. Gazette of the Federation of BiH No. 72/09, Sarajevo, 2009. (in Bosnian).
- 25. Ramírez, A., García, G., Werner, O., Navarro‐Pedreño, J. & Ros, R.M. (2021). Implications for phytoremediation of heavy metal contamination of soils and wild plants in the industrial area of Haina, Dominican Republic. Sustainability, 13, 1403. DOI:10.3390/su13031403
- 26. Schmidt S.B. & Husted S. (2019). The biochemical properties of manganese in plants. Plants (Basel), 8(10), 381. DOI:10.3390/plants8100381
- 27. Verbruggen, N., Hermans, C. & Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 181(4), pp. 759-776. DOI:10.1111/j.1469-8137.2008.02748.x
- 28. Wan, Y., Liu, J., Zhuang, Z., Wang, Q. & Li, H. (2024). Heavy metals in agricultural soils: Sources, influencing factors, and remediation strategies. Toxics, 12(1), 63. DOI:10.3390/toxics12010063
- 29. Zhao, P., Adnan, M., Xiao, P., Yang, X., Wang, H., Xiao, B. & Xue, S. (2024). Characterization of soil heavy metals at an abandoned smelting site based on particle size fraction and its implications for remediation strategy. Journal of Central South University, 31, pp. 1076-1091. DOI:10.1007/s11771-024-5646-z
- 30. Zhou, M., Zhi, Y., Dai, Y., Lv, J., Li, Y. & Wu, Z. (2020). The detoxification mechanisms of low-accumulating and non-low-accumulating medicinal plants under Cd and Pb stress. RSC Advances, 10, pp. 43882-43893. DOI:10.1039/D0RA08254F
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b0ded59-8775-4dc8-9d6b-b1108bf3aa98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.