PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evolutionary and Sparse Regression Approach for Data-Driven Modelling of an Overhead Crane Dynamics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Identification of an accurate and simple model of a complex underactuated crane dynamics for varying operational conditions is a crucial step towards designing and implementation of real-time monitoring and control systems to enhance crane safety and operational efficiency. This paper considers a non-parametric data-driven identification of an overhead crane dynamics using symbolic regression techniques to find compromise between model complexity and predicted output accuracy. A grammar-guided genetic programming (G3P) combined with l0 sparse regression is applied with two different variants of grammar to automatically construct a nonlinear autoregressive exogenous (NARX) model of different forms, termed extended and polynomial models. The proposed method is compared with a linear parameter-varying ARX (LPV-ARX) model. Identification is performed on experimental data obtained from a laboratory-scale overhead crane. The identified models are compared in terms of prediction accuracy, model’s complexity measured using number of model terms, and execution time. The regularized G3P method outperformed the LPV-ARX model in terms of model predictive output accuracy. The G3P with the extended grammar resulted in more accurate crane velocity prediction models than the models with the polynomial grammar. The payload sway prediction model with the polynomial grammar was less complex in all measured metrics while there was no statistical significance in the accuracy when compared to the models with extended grammar.
Twórcy
autor
  • Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, ul. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, ul. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, ul. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Ramli L., Mohamed Z., Abdullahi A.M., Jaafar H.I., Lazim I.M. Control strategies for crane systems: A comprehensive review. Mech. Syst. Signal Process. 2017; 95: 1–23. https://doi.org/10.1016/j.ymssp.2017.03.015.
  • 2. Mojallizadeh M.R., Brogliato B., Prieur C. Modeling and control of overhead cranes: A tutorial overview and perspectives. Annu. Rev. Control. 2023; 56: 100877. https://doi.org/10.1016/j.arcontrol.2023.03.002.
  • 3. Yang T., Sun N., Chen H., Fang Y. Neural network-based adaptive antiswing control of an underactuated ship-mounted crane with roll motions and input dead zones. IEEE Trans. Neural Netw. Learn. Syst. 2020; 31: 901–914. https://doi.org/10.1109/TNNLS.2019.2910580.
  • 4. Tuan L.A. Neural observer and adaptive fractional-order backstepping fast-terminal sliding-mode control of RTG cranes. IEEE Trans. Ind. Electron. 2021; 68: 434–442. https://doi.org/10.1109/TIE.2019.2962450.
  • 5. Jakovlev S., Eglynas T., Voznak M. Application of neural network predictive control methods to solve the shipping container sway control problem in quay cranes. IEEE Access. 2021; 9: 78253–78265. https://doi.org/10.1109/ACCESS.2021.3083928.
  • 6. Rincon L., Kubota Y., Venture G., Tagawa Y. Inverse dynamic control via “simulation of feedback control” by artificial neural networks for a crane system. Control Eng. Pract. 2020; 94: 104203. https://doi.org/10.1016/j.conengprac.2019.104203.
  • 7. Kim G.H., Yoon M., Jeon J.Y., Hong K.S. Data-driven modelling and adaptive predictive anti-swing control of overhead cranes. Int. J. Control Autom. Syst. 2022; 20: 2712–2723. https://doi.org/10.1007/s12555-022-0025-8.
  • 8. Tuan L.A., Cuong H.M., Trieu P.V., Nho L.C., Thuan V.D., Anh L.V. Adaptive neural network sliding mode control of shipboard container cranes considering actuator backlash. Mech. Syst. Signal Process. 2018; 112: 233–250. https://doi.org/10.1016/j.ymssp.2018.04.030.
  • 9. Smoczek J. Experimental verification of a GPC-LPV method with RLS and P1-TS fuzzy-based estimation for limiting the transient and residual vibration of a crane system. Mech. Syst. Signal Process. 2015; 62–63: 324–340. https://doi.org/10.1016/j.ymssp.2015.02.019.
  • 10. Shao X., Zhang J., Zhang X. Takagi-Sugeno fuzzy modeling and PSO-based robust LQR anti-swing control for overhead crane. Math. Probl. Eng. 2019; 4596782. https://doi.org/10.1155/2019/4596782.
  • 11. Zhu X., Wang N. Hairpin RNA genetic algorithm based ANFIS for modeling overhead cranes. Mech. Syst. Signal Process. 2022; 165: 108326. https://doi.org/10.1016/j.ymssp.2021.108326.
  • 12. Ma S.F., Leylaz G., Sun J.-Q. Identification of differentially flat output of underactuated dynamic systems. Int. J. Control. 2022; 95: 114–125. https://doi.org/10.1080/00207179.2020.1779960.
  • 13. Bao H., Kang Q., An J., Ma X., Zhou M. A performance-driven MPC algorithm for underactuated bridge cranes. Machines 2021; 9: 177. https://doi.org/10.3390/machines9080177.
  • 14. Maksakov A., Golovin I., Shysh M., Palis S. Data-driven modeling for damping and positioning control of gantry crane. Mech. Syst. Signal Process. 2023; 197: 110368. https://doi.org/10.1016/j.ymssp.2023.110368.
  • 15. Kusznir T., Smoczek J. Multi-gene genetic programming-based identification of a dynamic prediction model of an overhead traveling crane. Sensors 2022; 22: 339. https://doi.org/10.3390/s22010339.
  • 16. Zou H., Hastie T. Regularization and variable selection via the Elastic Net. J. R. Stat. Soc. B Stat. 2005; 67: 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x.
  • 17. McConaghy T. FFX: Fast, scalable, deterministic symbolic regression technology. In: Genetic Programming Theory and Practice IX: Genetic and Evolutionary Computation. Riolo R., Vladislavleva E., Moore J. (eds.), Springer, New York, NY, USA 2011; 235–260. https://doi.org/10.1007/978-1-4614-1770-5_13.
  • 18. Icke I., Bongard, J.C. Improving genetic programming based symbolic regression using deterministic machine learning. In IEEE Congress on Evolutionary Computation, Cancun, Mexico, 2013; 1763–1770. https://doi.org/10.1109/CEC.2013.6557774.
  • 19. Vanneschi L., Castelli M. Soft target and functional complexity reduction: A hybrid regularization method for genetic programming. Expert Syst. Appl. 2021; 177: 114929. https://doi.org/10.1016/j.eswa.2021.114929.
  • 20. Kusznir T., Smoczek J., Karwat B. Data-driven identification of crane dynamics using regularized genetic programming. Appl. Sci. 2024; 14: 3492. https://doi.org/10.3390/app14083492.
  • 21. Al-Alaoui M.A. Linear phase low-pass IIR digital differentiators. IEEE Trans. Signal Process. 2007; 55: 697–706. https://doi.org/10.1109/TSP.2006.885741.
  • 22. Billings S.A. Nonlinear system identification: NAR-MAX methods in the time, frequency, and spatiotemporal domains. John Wiley & Sons, Ltd. 2013.
  • 23. Natarajan B.K. Sparse approximate solutions to linear systems. SIAM J. Comput. 1995; 24: 227–234. https://doi.org/10.1137/S0097539792240406.
  • 24. Yang Y., Yu, J. Fast proximal gradient descent for a class of non-convex and non-smooth sparse learning problems. In: Proceedings of the 35th Uncertainty in Artificia Intelligence Conference 2019; 115: 1253–1262.
  • 25. Koza J.R. Genetic programming: on the programming of computers by means of natural selection: complex adaptive systems. MIT Press, Cambridge, MA, USA 1992.
  • 26. Rojas C.R., Hjalmarsson H. Sparse estimation based on a validation criterion. In Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA 2011; 2825–2830.
  • 27. Toth R., Hjalmarsson H., Rojas C.R. Order and structural dependence selection of LPV-ARX models revisited. In Proceedings of the 51st IEEE Conference on Decision and Control, Maui, HI, USA 2012; 6271–6276.
  • 28. Van Den Berg E., Friedlander M.P. Probing the Pareto Frontier for basis pursuit solutions. SIAM J. Sci. Comput. 2009; 31: 890–912. https://doi.org/10.1137/080714488.
  • 29. Luke S. Two fast tree-creation algorithms for genetic programming. IEEE Trans. Evol. Comput. 2000; 4: 274–283. https://doi.org/10.1109/4235.873237.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b0a1a41-78be-4b05-a419-93d445012f39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.