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INTRODUCTION

Material handling equipment, such as over-
head cranes, are an indispensable and important 
part of the manufacturing and logistical process-
es, which require the transportation of heavy and 
oversized loads. An overhead crane system is a 
typical underactuated mechanical system, where 
the horizontal motion of the cable-suspended 
payload results in the transient and residual swing 
of a payload suspended on a wire rope that ad-
versely affects the load positioning performanc-
es and may present a safety hazard for the sur-
rounding environment and people. Many research 
works have addressed this problem by various 
anti-sway crane control approaches. However, to 
obtain effective crane control system, specifically 

model-based control system, an accurate crane 
dynamics model is required. An accurate predic-
tion of crane’s position, velocity, and sway, as well 
as computational efficiency of a model are crucial 
for model predictive controller performance and 
in real-time monitoring applications developed 
for automated crane systems to enhance safety 
and workflow efficiency. The risk of colliding 
with obstacles can be reduced by restricting crane 
motion, taking into account predicted payload po-
sition and residual sway, as well as a safety mar-
gin between the payload and an obstacle.

The state of the art of modelling and con-
trol approaches to underactuated crane systems 
is comprehensively discussed in recent papers 
[1, 2] that are focusing mostly on the physics-
based modelling methods. Analytical models, for 
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example derived from the Euler-Lagrange equa-
tions, are powerful but nevertheless can be lacking 
as there are many nonlinear and unmodelled ef-
fects that result in deviation of the physical system 
from the idealized mathematical model. More-
over, obtaining a reliable mathematical model of 
a complex underactuated nonlinear crane system 
and determining the correct parameters is a time 
consuming process. Therefore, a data-driven mod-
elling approach is deemed as the more appropriate 
for model-based control design purposes.

A data-driven machine learning (ML) model-
ling of crane systems is mostly reported in the lit-
erature by using black-box modelling approaches. 
Artificial neural network (ANN) based models are 
developed for ship-mounted crane [3], a rubber-
tired gantry crane [4], quay crane [5], and over-
head crane [6]. A nonlinear autoregressive neural 
network with exogenous inputs (NARX-NN) is 
adapted in [7] to identify a data-driven model of 
an overhead crane based on input-output data ex-
amples collected on a small-scale laboratory crane 
driven by DC motors. The NARX-NN model with 
30 neurons in single hidden layer is trained of-
fline and online using extreme learning machines 
(ELM) method. After converting the data-driven 
model to a state-space form, an adaptive predic-
tive anti-swing control law is developed using the 
empirical model. A radial basis function net-
work is used to approximate dynamics of a 
shipboard container crane [8]. Linear param-
eter varying model identification for crane 
systems is also a popular method that has 
been often addressed by using Takagi-Sug-
eno fuzzy interpolation for switching linear 
models identified at local operating points [9, 
10]. In [11], the adaptive neuro-fuzzy inference 
model is evolved using RNA genetic algorithm 
(GA) with hairpin genetic operators for the over-
head crane dynamics identification.

However, the studies mostly present identi-
fication approach in which a specific black-box 
model structure is assumed (e.g. neural network, 
fuzzy or neuro-fuzzy models with fixed number of 
layers, nodes or rules) and parameters or weights 
are adjusted to reduce the model error. To address 
the issue of model structure selection some re-
search works propose to use a flat output identifi-
cation [12], Bayesian optimization method [13] or 
the Koopman operator theory merged with deep 
learning and regularization [14] for data-driven 
modelling of an underactuated crane dynam-
ics. In [15], the multi gene genetic programming 

(MGGP) technique is used to establish a dynami-
cal model of an overhead crane based on the ex-
perimental data measured on a laboratory stand. 
A hybrid least square and Levenberg-Marquardt 
algorithm is applied for parameter estimation in 
evolutionary evolved non-polynomial model. 
However, both evolutionary process of search-
ing for the best model structure and parameters 
estimation are guided by the model performance 
criteria without taking into account the complex-
ity of the model.

In this paper a regularized symbolic regression 
approach is proposed to evolve a crane dynamical 
model from experimental data and address a prob-
lem of structure selection and model dimensionality. 
The genetic programming is an effective symbolic 
regression method to automatically generate a sys-
tem dynamics model based on predefined sets of 
input features and mathematical functions (termi-
nal and nonterminal symbols) combined to obtain 
a grey-box model more interpretable than a black-
box model. However, symbolic regression can be 
prone to generate complex expressions and overfit-
ting when striving to decrease prediction error. This 
problem can be mitigated by providing a grammar to 
constrain the searching space and incorporate prior 
knowledge regarding the expected form and dimen-
sion of a target model. Another method of reducing 
a complexity of GP-based evolved model is to use 
regularization techniques [16]. Regularization is the 
popular method that is used in different forms in ML 
to overcame model complexity and prevent overfit-
ting problem. The l0 regularization provides better 
model sparsity, however l0 norm is a nonconvex 
function that makes it difficult to optimize. The most 
popular regularization methods are based on easier 
to solve, convex l1 and l2 norms (convex relaxation of 
l0 norm), e.g. Lasso and Ridge, or their hybrids intro-
duced in elastic net [16]. In [17], the FFX determinis-
tic algorithm has been stated as an alternative to GP, 
outperforming GP in symbolic regression problems. 
However, the recent works report that hybridization 
of these methods can be useful in reducing variance 
and complexity of a model [18, 19].

This paper follows the previous work [20], in 
which a G3P algorithm combined with sparse re-
gression l0, was compared with other ML techniques 
including conventional MGGP and ANN. This study 
is motivated by the need of further simplification of 
a crane data-driven dynamical model making it more 
feasible and computational efficient for implemen-
tation in real-time control and monitoring applica-
tions. This prerequisite is especially important when 
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control platforms such as PLC (programmable logic 
controller) and PAC (programmable automation 
controller) are used. Thus, comparing to [20], this 
work studies the impact of a grammar on model’s 
prediction performances and complexity. The differ-
ent grammars are applied to obtain predictive NARX 
models with a polynomial basis and an extended ba-
sis with additional nonlinear functions. Moreover, 
the comparison is expanded by the LPV-ARX model 
where the  sparse estimator is used to find the coef-
ficient support and the least squares method used to 
re-estimate the nonzero coefficients. The models are 
derived from experimental data obtained from lab-
oratory-scale overhead travelling crane for different 
working conditions (rope length and payload mass) 
and validated in terms of prediction performances 
(accuracy of model prediction output: crane veloc-
ity and payload sway), model’s complexity (number 
of model terms), as well as computational efficiency 
(model’s execution time).

IDENTIFICATION OF CRANE DYNAMICS

This section details the identification experi-
mental setup of the laboratory-scale overhead 
crane, the G3P with sparse regression algorithm 
for the identification of the input-output discrete-
time dynamic model of an underactuated crane 
and the linear parameter varying ARX model 
used for a comparative study.

The identification experiments were carried 
out on a laboratory scale overhead crane driven 
by AC motors supplied by frequency inverters and 
controlled by a Mitsubishi FX2N series PLC. Fig-
ure 1 presents hardware experimental setup. The 
crane bridge is driven by two 0.18 kW AC gear 
motors supplied by LGiC5 0.4 kW frequency in-
verters, that are controlled by the voltage signal 
u within the range ± 10 V. The crane’s position x, 
sway angle a and rope length l are measured using 
the incremental encoders with resolutions of 400, 
2000 and 100 ppr (pulses per rotation), respectively. 
The encoders are installed on the wheels to measure 
the position x relative to the crane bridge, under the 
trolley connected to a pair of fork arms embracing 
the hoisting cable to measure the sway angle a, and 
on the hoisting drum to measure the rope length l. 
The data from the sensors was sampled at 10 Hz 
using a PC (16 GB RAM, Quad Core 4 GHz In-
tel Core i7-6700 K CPU) equipped with IO card 
PCI1710HG, MS Windows 10 operating sys-
tem and Matlab software release R2020. During 

experiments, the PLC was used to transmit the 
signals from sensors to PC and control signal 
u to actuators. An IIR low-pass differentiator [21] 
was used to obtain an estimate of the velocity from 
the position measurement while the sway signal was 
filtered using a low-pass FIR filter. The filtered sig-
nals were down sampled by keeping every second 
sample. Due to the large mechanical impedance in 
the drive system, the underactuated crane dynam-
ics was assumed to be decomposed into actuated 
and unactuated part, that can be modelled by two 
discrete-time models. The first model, denoted as the 
velocity model (1), presents the discrete-time rela-
tion between crane velocity v and control signal u, 
while the second model, denoted as the sway model 
(2), presents the discrete-time relation between crane 
velocity v and payload sway α.

  𝑣𝑣𝑘𝑘 = 𝑓𝑓1(𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) (1) 
 𝛼𝛼𝑘𝑘 = 𝑓𝑓2(𝛼𝛼𝑘𝑘−1, … , 𝛼𝛼𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛) (2) 
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 𝑦𝑦𝑘𝑘 = ∑ 𝜃𝜃𝑖𝑖𝜙𝜙𝑖𝑖

𝑀𝑀
𝑖𝑖=1 + 𝑒𝑒𝑘𝑘 (4) 

 
 𝜃𝜃∗ = argmin

𝜃𝜃
‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 (5) 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

 ℎ(𝑣𝑣) + 1
2 ‖𝑣𝑣 − 𝑞𝑞‖2 

2  (7) 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 

= 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) 
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+ 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
 
𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 

=
max((𝜃𝜃(0)−𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0)−𝑛𝑛))

2
)

2𝜂𝜂   (10) 
 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

 
 𝑦𝑦𝑘𝑘 + ∑ 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘)𝑦𝑦𝑘𝑘−𝑖𝑖 =𝑛𝑛𝑚𝑚

𝑖𝑖=1  
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𝑗𝑗=1 + 𝑒𝑒𝑘𝑘   

(12) 
 
 
 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) = 𝑎𝑎𝑖𝑖,0 + ∑ 𝑎𝑎𝑖𝑖,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (13) 

 
  𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) = 𝑏𝑏𝑗𝑗,0 + ∑ 𝑏𝑏𝑗𝑗,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (14) 

 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … , −
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑚𝑚𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]

𝑇𝑇
, 

𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

𝜃𝜃 = [𝑎𝑎1,0, 𝑎𝑎1,1, … , 𝑎𝑎𝑛𝑛𝑚𝑚,𝑛𝑛𝑞𝑞, 𝑏𝑏0,0, 𝑏𝑏0,1, … , 𝑏𝑏𝑛𝑛𝑏𝑏,𝑛𝑛𝑞𝑞]
𝑇𝑇
. 

 (2)

Identification framework

Under the modelling assumptions given 
by (1) and (2), the NARX model class [22] is 
selected in order to identify the input-output 
nonlinear crane dynamics. The NARX model 
chosen to express discrete-time relations (1) 
and (2), is a nonlinear generalization of the 
ARX model and has the general form

 

 𝑣𝑣𝑘𝑘 = 𝑓𝑓1(𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) (1) 
 𝛼𝛼𝑘𝑘 = 𝑓𝑓2(𝛼𝛼𝑘𝑘−1, … , 𝛼𝛼𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛) (2) 
 𝑦𝑦𝑘𝑘 = 𝐹𝐹(𝑦𝑦𝑘𝑘−1, … , 𝑦𝑦𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) + 𝑒𝑒𝑘𝑘 (3) 
 
 𝑦𝑦𝑘𝑘 = ∑ 𝜃𝜃𝑖𝑖𝜙𝜙𝑖𝑖

𝑀𝑀
𝑖𝑖=1 + 𝑒𝑒𝑘𝑘 (4) 

 
 𝜃𝜃∗ = argmin

𝜃𝜃
‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 (5) 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

 ℎ(𝑣𝑣) + 1
2 ‖𝑣𝑣 − 𝑞𝑞‖2 

2  (7) 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 

= 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) +
𝑡𝑡𝑗𝑗−1

𝑡𝑡𝑗𝑗
(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 

+ 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
 
𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 

=
max((𝜃𝜃(0)−𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0)−𝑛𝑛))

2
)

2𝜂𝜂   (10) 
 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

 
 𝑦𝑦𝑘𝑘 + ∑ 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘)𝑦𝑦𝑘𝑘−𝑖𝑖 =𝑛𝑛𝑚𝑚

𝑖𝑖=1  
 = ∑ 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘)𝑢𝑢𝑘𝑘−𝑗𝑗

𝑛𝑛𝑏𝑏
𝑗𝑗=1 + 𝑒𝑒𝑘𝑘   

(12) 
 
 
 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) = 𝑎𝑎𝑖𝑖,0 + ∑ 𝑎𝑎𝑖𝑖,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (13) 

 
  𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) = 𝑏𝑏𝑗𝑗,0 + ∑ 𝑏𝑏𝑗𝑗,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (14) 

 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … , −
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑚𝑚𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]

𝑇𝑇
, 

𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

𝜃𝜃 = [𝑎𝑎1,0, 𝑎𝑎1,1, … , 𝑎𝑎𝑛𝑛𝑚𝑚,𝑛𝑛𝑞𝑞, 𝑏𝑏0,0, 𝑏𝑏0,1, … , 𝑏𝑏𝑛𝑛𝑏𝑏,𝑛𝑛𝑞𝑞]
𝑇𝑇
. 

 (3)

where: y is the output, u is the input, e is Gauss-
ian white noise and the subscript k is the 
sample instant. Additionally, when the 
nonlinear function F is linear in the pa-
rameters then the model is described by

 

 𝑣𝑣𝑘𝑘 = 𝑓𝑓1(𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) (1) 
 𝛼𝛼𝑘𝑘 = 𝑓𝑓2(𝛼𝛼𝑘𝑘−1, … , 𝛼𝛼𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛) (2) 
 𝑦𝑦𝑘𝑘 = 𝐹𝐹(𝑦𝑦𝑘𝑘−1, … , 𝑦𝑦𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) + 𝑒𝑒𝑘𝑘 (3) 
 
 𝑦𝑦𝑘𝑘 = ∑ 𝜃𝜃𝑖𝑖𝜙𝜙𝑖𝑖

𝑀𝑀
𝑖𝑖=1 + 𝑒𝑒𝑘𝑘 (4) 

 
 𝜃𝜃∗ = argmin

𝜃𝜃
‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 (5) 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

 ℎ(𝑣𝑣) + 1
2 ‖𝑣𝑣 − 𝑞𝑞‖2 

2  (7) 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 

= 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) +
𝑡𝑡𝑗𝑗−1

𝑡𝑡𝑗𝑗
(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 

+ 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
 
𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 

=
max((𝜃𝜃(0)−𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0)−𝑛𝑛))

2
)

2𝜂𝜂   (10) 
 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

 
 𝑦𝑦𝑘𝑘 + ∑ 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘)𝑦𝑦𝑘𝑘−𝑖𝑖 =𝑛𝑛𝑚𝑚

𝑖𝑖=1  
 = ∑ 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘)𝑢𝑢𝑘𝑘−𝑗𝑗

𝑛𝑛𝑏𝑏
𝑗𝑗=1 + 𝑒𝑒𝑘𝑘   

(12) 
 
 
 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) = 𝑎𝑎𝑖𝑖,0 + ∑ 𝑎𝑎𝑖𝑖,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (13) 

 
  𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) = 𝑏𝑏𝑗𝑗,0 + ∑ 𝑏𝑏𝑗𝑗,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (14) 

 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … , −
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑚𝑚𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]

𝑇𝑇
, 

𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

𝜃𝜃 = [𝑎𝑎1,0, 𝑎𝑎1,1, … , 𝑎𝑎𝑛𝑛𝑚𝑚,𝑛𝑛𝑞𝑞, 𝑏𝑏0,0, 𝑏𝑏0,1, … , 𝑏𝑏𝑛𝑛𝑏𝑏,𝑛𝑛𝑞𝑞]
𝑇𝑇
. 

 (4)

where: ϕi is the i-th model term that is evolved by 
the G3P algorithm, and θi is the i-th model 
term coefficient. The linear in the param-
eters model structure coefficients can be 
estimated deterministically by the method 
of least squares

 

 𝑣𝑣𝑘𝑘 = 𝑓𝑓1(𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) (1) 
 𝛼𝛼𝑘𝑘 = 𝑓𝑓2(𝛼𝛼𝑘𝑘−1, … , 𝛼𝛼𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛) (2) 
 𝑦𝑦𝑘𝑘 = 𝐹𝐹(𝑦𝑦𝑘𝑘−1, … , 𝑦𝑦𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) + 𝑒𝑒𝑘𝑘 (3) 
 
 𝑦𝑦𝑘𝑘 = ∑ 𝜃𝜃𝑖𝑖𝜙𝜙𝑖𝑖

𝑀𝑀
𝑖𝑖=1 + 𝑒𝑒𝑘𝑘 (4) 

 
 𝜃𝜃∗ = argmin

𝜃𝜃
‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 (5) 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

 ℎ(𝑣𝑣) + 1
2 ‖𝑣𝑣 − 𝑞𝑞‖2 

2  (7) 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 

= 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) +
𝑡𝑡𝑗𝑗−1

𝑡𝑡𝑗𝑗
(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 

+ 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
 
𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 

=
max((𝜃𝜃(0)−𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0)−𝑛𝑛))

2
)

2𝜂𝜂   (10) 
 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

 
 𝑦𝑦𝑘𝑘 + ∑ 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘)𝑦𝑦𝑘𝑘−𝑖𝑖 =𝑛𝑛𝑚𝑚

𝑖𝑖=1  
 = ∑ 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘)𝑢𝑢𝑘𝑘−𝑗𝑗

𝑛𝑛𝑏𝑏
𝑗𝑗=1 + 𝑒𝑒𝑘𝑘   

(12) 
 
 
 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) = 𝑎𝑎𝑖𝑖,0 + ∑ 𝑎𝑎𝑖𝑖,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (13) 

 
  𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) = 𝑏𝑏𝑗𝑗,0 + ∑ 𝑏𝑏𝑗𝑗,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (14) 

 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … , −
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑚𝑚𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]

𝑇𝑇
, 

𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

𝜃𝜃 = [𝑎𝑎1,0, 𝑎𝑎1,1, … , 𝑎𝑎𝑛𝑛𝑚𝑚,𝑛𝑛𝑞𝑞, 𝑏𝑏0,0, 𝑏𝑏0,1, … , 𝑏𝑏𝑛𝑛𝑏𝑏,𝑛𝑛𝑞𝑞]
𝑇𝑇
. 

 (5)

where: Φ is a matrix whose i-th column comprises 
of the evaluation of the model terms ϕi. In 
the proposed algorithm the number of mod-
el terms ϕ is fixed for each individual in the 
population and a sparse solution to (5) is 
found by solving the l0 regularized problem
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The fast monotone accelerated proximal gra-
dient descent used in this paper, starts with the 
initial conditions z(1) = θ(1) = θ(0), t0 = 0, and update 
θ(j+1) according to

 

 𝑣𝑣𝑘𝑘 = 𝑓𝑓1(𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) (1) 
 𝛼𝛼𝑘𝑘 = 𝑓𝑓2(𝛼𝛼𝑘𝑘−1, … , 𝛼𝛼𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛) (2) 
 𝑦𝑦𝑘𝑘 = 𝐹𝐹(𝑦𝑦𝑘𝑘−1, … , 𝑦𝑦𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) + 𝑒𝑒𝑘𝑘 (3) 
 
 𝑦𝑦𝑘𝑘 = ∑ 𝜃𝜃𝑖𝑖𝜙𝜙𝑖𝑖

𝑀𝑀
𝑖𝑖=1 + 𝑒𝑒𝑘𝑘 (4) 

 
 𝜃𝜃∗ = argmin

𝜃𝜃
‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 (5) 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

 ℎ(𝑣𝑣) + 1
2 ‖𝑣𝑣 − 𝑞𝑞‖2 

2  (7) 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 

= 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) +
𝑡𝑡𝑗𝑗−1

𝑡𝑡𝑗𝑗
(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 

+ 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
 
𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 

=
max((𝜃𝜃(0)−𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0)−𝑛𝑛))

2
)

2𝜂𝜂   (10) 
 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

 
 𝑦𝑦𝑘𝑘 + ∑ 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘)𝑦𝑦𝑘𝑘−𝑖𝑖 =𝑛𝑛𝑚𝑚

𝑖𝑖=1  
 = ∑ 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘)𝑢𝑢𝑘𝑘−𝑗𝑗

𝑛𝑛𝑏𝑏
𝑗𝑗=1 + 𝑒𝑒𝑘𝑘   

(12) 
 
 
 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) = 𝑎𝑎𝑖𝑖,0 + ∑ 𝑎𝑎𝑖𝑖,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (13) 

 
  𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) = 𝑏𝑏𝑗𝑗,0 + ∑ 𝑏𝑏𝑗𝑗,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (14) 

 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … , −
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑚𝑚𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]

𝑇𝑇
, 

𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

𝜃𝜃 = [𝑎𝑎1,0, 𝑎𝑎1,1, … , 𝑎𝑎𝑛𝑛𝑚𝑚,𝑛𝑛𝑞𝑞, 𝑏𝑏0,0, 𝑏𝑏0,1, … , 𝑏𝑏𝑛𝑛𝑏𝑏,𝑛𝑛𝑞𝑞]
𝑇𝑇
. 

 (9)

where:

 𝑣𝑣𝑘𝑘 = 𝑓𝑓1(𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) (1) 
 𝛼𝛼𝑘𝑘 = 𝑓𝑓2(𝛼𝛼𝑘𝑘−1, … , 𝛼𝛼𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛) (2) 
 𝑦𝑦𝑘𝑘 = 𝐹𝐹(𝑦𝑦𝑘𝑘−1, … , 𝑦𝑦𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) + 𝑒𝑒𝑘𝑘 (3) 
 
 𝑦𝑦𝑘𝑘 = ∑ 𝜃𝜃𝑖𝑖𝜙𝜙𝑖𝑖

𝑀𝑀
𝑖𝑖=1 + 𝑒𝑒𝑘𝑘 (4) 

 
 𝜃𝜃∗ = argmin

𝜃𝜃
‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 (5) 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

 ℎ(𝑣𝑣) + 1
2 ‖𝑣𝑣 − 𝑞𝑞‖2 

2  (7) 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 

= 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) +
𝑡𝑡𝑗𝑗−1

𝑡𝑡𝑗𝑗
(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 

+ 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
 

𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 

=
max ((𝜃𝜃(0) − 𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0) − 𝑦𝑦))

2
)

2𝜂𝜂  

(10) 
 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

 
 𝑦𝑦𝑘𝑘 + ∑ 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘)𝑦𝑦𝑘𝑘−𝑖𝑖 =𝑛𝑛𝑚𝑚

𝑖𝑖=1  
 = ∑ 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘)𝑢𝑢𝑘𝑘−𝑗𝑗

𝑛𝑛𝑏𝑏
𝑗𝑗=1 + 𝑒𝑒𝑘𝑘   

(12) 
 
 
 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) = 𝑎𝑎𝑖𝑖,0 + ∑ 𝑎𝑎𝑖𝑖,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (13) 

 
  𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) = 𝑏𝑏𝑗𝑗,0 + ∑ 𝑏𝑏𝑗𝑗,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (14) 

 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … , −
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑚𝑚𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]

𝑇𝑇
, 

𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

 

 𝑣𝑣𝑘𝑘 = 𝑓𝑓1(𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) (1) 
 𝛼𝛼𝑘𝑘 = 𝑓𝑓2(𝛼𝛼𝑘𝑘−1, … , 𝛼𝛼𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛) (2) 
 𝑦𝑦𝑘𝑘 = 𝐹𝐹(𝑦𝑦𝑘𝑘−1, … , 𝑦𝑦𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) + 𝑒𝑒𝑘𝑘 (3) 
 
 𝑦𝑦𝑘𝑘 = ∑ 𝜃𝜃𝑖𝑖𝜙𝜙𝑖𝑖

𝑀𝑀
𝑖𝑖=1 + 𝑒𝑒𝑘𝑘 (4) 

 
 𝜃𝜃∗ = argmin

𝜃𝜃
‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 (5) 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

 ℎ(𝑣𝑣) + 1
2 ‖𝑣𝑣 − 𝑞𝑞‖2 

2  (7) 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 

= 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) +
𝑡𝑡𝑗𝑗−1

𝑡𝑡𝑗𝑗
(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 

+ 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
 
𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 

=
max((𝜃𝜃(0)−𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0)−𝑛𝑛))

2
)

2𝜂𝜂   (10) 
 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

 
 𝑦𝑦𝑘𝑘 + ∑ 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘)𝑦𝑦𝑘𝑘−𝑖𝑖 =𝑛𝑛𝑚𝑚

𝑖𝑖=1  
 = ∑ 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘)𝑢𝑢𝑘𝑘−𝑗𝑗

𝑛𝑛𝑏𝑏
𝑗𝑗=1 + 𝑒𝑒𝑘𝑘   

(12) 
 
 
 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) = 𝑎𝑎𝑖𝑖,0 + ∑ 𝑎𝑎𝑖𝑖,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (13) 

 
  𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) = 𝑏𝑏𝑗𝑗,0 + ∑ 𝑏𝑏𝑗𝑗,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (14) 

 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … , −
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑚𝑚𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]

𝑇𝑇
, 

𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

𝜃𝜃 = [𝑎𝑎1,0, 𝑎𝑎1,1, … , 𝑎𝑎𝑛𝑛𝑚𝑚,𝑛𝑛𝑞𝑞, 𝑏𝑏0,0, 𝑏𝑏0,1, … , 𝑏𝑏𝑛𝑛𝑏𝑏,𝑛𝑛𝑞𝑞]
𝑇𝑇

. 

 (6)

where: ‖θ‖0 is the l0 pseudonorm, i.e.  𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 
where: ‖𝜃𝜃‖0 is the 𝑙𝑙0 pseudonorm, i.e. ‖𝜃𝜃‖0 = ∑ 𝟙𝟙𝜃𝜃𝑖𝑖≠0

𝑁𝑁
𝑖𝑖=1 . The problem (6) is nonconvex and has 

proven to be NP-hard [23] and therefore a suboptimal solution is found using a fast proximal gradient 
descent method [24] which converges to a critical point of 𝐹𝐹(𝜃𝜃). The proximal mapping of a function ℎ 
is given by the proximal operator 
 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣
 ℎ(𝑣𝑣) + 1

2 ‖𝑣𝑣 − 𝑞𝑞‖2 
2  (7) 

Since the minimization problem of (7) is separable the prox operator is the element wise hard-
thresholding operator with threshold 𝜏𝜏: 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

The fast monotone accelerated proximal gradient descent used in this paper, starts with the initial 
conditions 𝑧𝑧(1) = 𝜃𝜃(1) = 𝜃𝜃(0), 𝑡𝑡0 = 0, and update 𝜃𝜃(𝑗𝑗+1) according to 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

where: 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))), 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) + 𝑡𝑡𝑗𝑗−1
𝑡𝑡𝑗𝑗

(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
and n is the number of elements, 𝑗𝑗 is the iteration number, 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)) is a support projection 
operator that returns a vector whose elements with indices in 𝑧𝑧(𝑗𝑗) are the same as those in 𝑝𝑝(𝑗𝑗), and s is 
the step size.  
The algorithm converges when the step size 𝑠𝑠 ≤ min {2𝑠𝑠

𝐺𝐺2 , 1
𝐿𝐿} where L is the Lipschitz constant of the 

gradient ∇𝑔𝑔 and is given by the largest singular value of Φ, and G is the bound on the gradient, i.e. 
‖∇𝑔𝑔(𝜃𝜃)‖∞ ≤ 𝐺𝐺. In order to find the appropriate hyperparameter 𝜆𝜆 the fast monotone accelerated 
proximal gradient descent algorithm is run with 10 different values of 𝜆𝜆 logarithmically spaced between 
𝜆𝜆𝑚𝑚𝑖𝑖𝑚𝑚 and 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚: 

 𝜆𝜆𝑚𝑚𝑖𝑖𝑚𝑚 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 =

max((𝜃𝜃(0)−𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0)−𝑦𝑦))
2

)
2𝜂𝜂  (10) 

where: the step size 𝜂𝜂 = 𝑚𝑚𝑚𝑚𝑚𝑚 { 1
2|𝑆𝑆| , 1

𝐿𝐿} and |𝑆𝑆| is the number of nonzero elements in 𝜃𝜃(0). 
Grammar guided genetic programming 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

where: �̅�𝜃𝑖𝑖 = ∑ |𝜃𝜃𝑖𝑖|−|𝜃𝜃𝑖𝑖|𝑀𝑀
𝑖𝑖=1

∑ |𝜃𝜃𝑖𝑖|𝑀𝑀
𝑖𝑖=1

 is the normalized coefficients of the model terms. 

In the proposed method, three different variation operators are used, such as subtree crossover, subtree 
mutation and point mutation, which are illustrated in Figure 2 and 3. In subtree crossover, once two 
model terms are selected from two different individuals in the population, a random subtree is selected 
from one model term and a subtree is searched in the second model term so that once the subtrees are 
swapped the offspring are syntactically correct according to the grammar. In subtree mutation, once a 
model term is selected form an individual in the population, a random subtree in that model term is 
selected and replaced by a newly generated subtree in a manner so that the offspring is syntactically 
correct. In point mutation a terminal node is selected and is replaced by another terminal node. 
Figure 2. Illustration of subtree crossover 
Figure 3. Illustration of mutation operators: a) point mutation, b) subtree mutation 
Linear parameter varying models 
Linear parameter varying input-output models are capable of modeling nonlinear systems by having the 
model parameters being a function of a measurable time-varying signal called the scheduling variable, 

. The problem (6) is 
nonconvex and has proven to be NP-hard 
[23] and therefore a suboptimal solution is 
found using a fast proximal gradient descent 
method [24] which converges to a critical 
point of F(θ). The proximal mapping of a 
function h is given by the proximal operator

 

 𝑣𝑣𝑘𝑘 = 𝑓𝑓1(𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) (1) 
 𝛼𝛼𝑘𝑘 = 𝑓𝑓2(𝛼𝛼𝑘𝑘−1, … , 𝛼𝛼𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛) (2) 
 𝑦𝑦𝑘𝑘 = 𝐹𝐹(𝑦𝑦𝑘𝑘−1, … , 𝑦𝑦𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) + 𝑒𝑒𝑘𝑘 (3) 
 
 𝑦𝑦𝑘𝑘 = ∑ 𝜃𝜃𝑖𝑖𝜙𝜙𝑖𝑖

𝑀𝑀
𝑖𝑖=1 + 𝑒𝑒𝑘𝑘 (4) 

 
 𝜃𝜃∗ = argmin

𝜃𝜃
‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 (5) 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

 ℎ(𝑣𝑣) + 1
2 ‖𝑣𝑣 − 𝑞𝑞‖2 

2  (7) 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 

= 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) +
𝑡𝑡𝑗𝑗−1

𝑡𝑡𝑗𝑗
(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 

+ 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
 
𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 

=
max((𝜃𝜃(0)−𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0)−𝑛𝑛))

2
)

2𝜂𝜂   (10) 
 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

 
 𝑦𝑦𝑘𝑘 + ∑ 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘)𝑦𝑦𝑘𝑘−𝑖𝑖 =𝑛𝑛𝑚𝑚

𝑖𝑖=1  
 = ∑ 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘)𝑢𝑢𝑘𝑘−𝑗𝑗

𝑛𝑛𝑏𝑏
𝑗𝑗=1 + 𝑒𝑒𝑘𝑘   

(12) 
 
 
 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) = 𝑎𝑎𝑖𝑖,0 + ∑ 𝑎𝑎𝑖𝑖,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (13) 

 
  𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) = 𝑏𝑏𝑗𝑗,0 + ∑ 𝑏𝑏𝑗𝑗,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (14) 

 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … , −
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑚𝑚𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]

𝑇𝑇
, 

𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

𝜃𝜃 = [𝑎𝑎1,0, 𝑎𝑎1,1, … , 𝑎𝑎𝑛𝑛𝑚𝑚,𝑛𝑛𝑞𝑞, 𝑏𝑏0,0, 𝑏𝑏0,1, … , 𝑏𝑏𝑛𝑛𝑏𝑏,𝑛𝑛𝑞𝑞]
𝑇𝑇

. 

 (7)

Since the minimization problem of (7) is 
separable the prox operator is the element wise 
hard-thresholding operator with threshold τ:

 

 𝑣𝑣𝑘𝑘 = 𝑓𝑓1(𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) (1) 
 𝛼𝛼𝑘𝑘 = 𝑓𝑓2(𝛼𝛼𝑘𝑘−1, … , 𝛼𝛼𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛) (2) 
 𝑦𝑦𝑘𝑘 = 𝐹𝐹(𝑦𝑦𝑘𝑘−1, … , 𝑦𝑦𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) + 𝑒𝑒𝑘𝑘 (3) 
 
 𝑦𝑦𝑘𝑘 = ∑ 𝜃𝜃𝑖𝑖𝜙𝜙𝑖𝑖

𝑀𝑀
𝑖𝑖=1 + 𝑒𝑒𝑘𝑘 (4) 

 
 𝜃𝜃∗ = argmin

𝜃𝜃
‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 (5) 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

 ℎ(𝑣𝑣) + 1
2 ‖𝑣𝑣 − 𝑞𝑞‖2 

2  (7) 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 

= 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) +
𝑡𝑡𝑗𝑗−1

𝑡𝑡𝑗𝑗
(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 

+ 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
 
𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 

=
max((𝜃𝜃(0)−𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0)−𝑛𝑛))

2
)

2𝜂𝜂   (10) 
 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

 
 𝑦𝑦𝑘𝑘 + ∑ 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘)𝑦𝑦𝑘𝑘−𝑖𝑖 =𝑛𝑛𝑚𝑚

𝑖𝑖=1  
 = ∑ 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘)𝑢𝑢𝑘𝑘−𝑗𝑗

𝑛𝑛𝑏𝑏
𝑗𝑗=1 + 𝑒𝑒𝑘𝑘   

(12) 
 
 
 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) = 𝑎𝑎𝑖𝑖,0 + ∑ 𝑎𝑎𝑖𝑖,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (13) 

 
  𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) = 𝑏𝑏𝑗𝑗,0 + ∑ 𝑏𝑏𝑗𝑗,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (14) 

 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … , −
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑚𝑚𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]

𝑇𝑇
, 

𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

𝜃𝜃 = [𝑎𝑎1,0, 𝑎𝑎1,1, … , 𝑎𝑎𝑛𝑛𝑚𝑚,𝑛𝑛𝑞𝑞, 𝑏𝑏0,0, 𝑏𝑏0,1, … , 𝑏𝑏𝑛𝑛𝑏𝑏,𝑛𝑛𝑞𝑞]
𝑇𝑇

. 

 (8)

Figure 1. Schematic view of experimental setup
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and n is the number of elements, j is the iteration 
number, 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 
where: ‖𝜃𝜃‖0 is the 𝑙𝑙0 pseudonorm, i.e. ‖𝜃𝜃‖0 = ∑ 𝟙𝟙𝜃𝜃𝑖𝑖≠0

𝑁𝑁
𝑖𝑖=1 . The problem (6) is nonconvex and has 

proven to be NP-hard [23] and therefore a suboptimal solution is found using a fast proximal gradient 
descent method [24] which converges to a critical point of 𝐹𝐹(𝜃𝜃). The proximal mapping of a function ℎ 
is given by the proximal operator 
 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣
 ℎ(𝑣𝑣) + 1

2 ‖𝑣𝑣 − 𝑞𝑞‖2 
2  (7) 

Since the minimization problem of (7) is separable the prox operator is the element wise hard-
thresholding operator with threshold 𝜏𝜏: 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

The fast monotone accelerated proximal gradient descent used in this paper, starts with the initial 
conditions 𝑧𝑧(1) = 𝜃𝜃(1) = 𝜃𝜃(0), 𝑡𝑡0 = 0, and update 𝜃𝜃(𝑗𝑗+1) according to 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

where: 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))), 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) + 𝑡𝑡𝑗𝑗−1
𝑡𝑡𝑗𝑗

(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
and n is the number of elements, 𝑗𝑗 is the iteration number, 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)) is a support projection 
operator that returns a vector whose elements with indices in 𝑧𝑧(𝑗𝑗) are the same as those in 𝑝𝑝(𝑗𝑗), and s is 
the step size.  
The algorithm converges when the step size 𝑠𝑠 ≤ min {2𝑠𝑠

𝐺𝐺2 , 1
𝐿𝐿} where L is the Lipschitz constant of the 

gradient ∇𝑔𝑔 and is given by the largest singular value of Φ, and G is the bound on the gradient, i.e. 
‖∇𝑔𝑔(𝜃𝜃)‖∞ ≤ 𝐺𝐺. In order to find the appropriate hyperparameter 𝜆𝜆 the fast monotone accelerated 
proximal gradient descent algorithm is run with 10 different values of 𝜆𝜆 logarithmically spaced between 
𝜆𝜆𝑚𝑚𝑖𝑖𝑚𝑚 and 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚: 

 𝜆𝜆𝑚𝑚𝑖𝑖𝑚𝑚 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 =

max((𝜃𝜃(0)−𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0)−𝑦𝑦))
2

)
2𝜂𝜂  (10) 

where: the step size 𝜂𝜂 = 𝑚𝑚𝑚𝑚𝑚𝑚 { 1
2|𝑆𝑆| , 1

𝐿𝐿} and |𝑆𝑆| is the number of nonzero elements in 𝜃𝜃(0). 
Grammar guided genetic programming 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

where: �̅�𝜃𝑖𝑖 = ∑ |𝜃𝜃𝑖𝑖|−|𝜃𝜃𝑖𝑖|𝑀𝑀
𝑖𝑖=1

∑ |𝜃𝜃𝑖𝑖|𝑀𝑀
𝑖𝑖=1

 is the normalized coefficients of the model terms. 

In the proposed method, three different variation operators are used, such as subtree crossover, subtree 
mutation and point mutation, which are illustrated in Figure 2 and 3. In subtree crossover, once two 
model terms are selected from two different individuals in the population, a random subtree is selected 
from one model term and a subtree is searched in the second model term so that once the subtrees are 
swapped the offspring are syntactically correct according to the grammar. In subtree mutation, once a 
model term is selected form an individual in the population, a random subtree in that model term is 
selected and replaced by a newly generated subtree in a manner so that the offspring is syntactically 
correct. In point mutation a terminal node is selected and is replaced by another terminal node. 
Figure 2. Illustration of subtree crossover 
Figure 3. Illustration of mutation operators: a) point mutation, b) subtree mutation 
Linear parameter varying models 
Linear parameter varying input-output models are capable of modeling nonlinear systems by having the 
model parameters being a function of a measurable time-varying signal called the scheduling variable, 

 is a support projection 
operator that returns a vector whose elements 
with indices in z(j) are the same as those in r(j), 
and s is the step size. 

The algorithm converges when the step size 
s ≤ 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 
where: ‖𝜃𝜃‖0 is the 𝑙𝑙0 pseudonorm, i.e. ‖𝜃𝜃‖0 = ∑ 𝟙𝟙𝜃𝜃𝑖𝑖≠0

𝑁𝑁
𝑖𝑖=1 . The problem (6) is nonconvex and has 

proven to be NP-hard [23] and therefore a suboptimal solution is found using a fast proximal gradient 
descent method [24] which converges to a critical point of 𝐹𝐹(𝜃𝜃). The proximal mapping of a function ℎ 
is given by the proximal operator 
 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣
 ℎ(𝑣𝑣) + 1

2 ‖𝑣𝑣 − 𝑞𝑞‖2 
2  (7) 

Since the minimization problem of (7) is separable the prox operator is the element wise hard-
thresholding operator with threshold 𝜏𝜏: 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

The fast monotone accelerated proximal gradient descent used in this paper, starts with the initial 
conditions 𝑧𝑧(1) = 𝜃𝜃(1) = 𝜃𝜃(0), 𝑡𝑡0 = 0, and update 𝜃𝜃(𝑗𝑗+1) according to 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

where: 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))), 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) + 𝑡𝑡𝑗𝑗−1
𝑡𝑡𝑗𝑗

(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
and n is the number of elements, 𝑗𝑗 is the iteration number, 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)) is a support projection 
operator that returns a vector whose elements with indices in 𝑧𝑧(𝑗𝑗) are the same as those in 𝑝𝑝(𝑗𝑗), and s is 
the step size.  
The algorithm converges when the step size 𝑠𝑠 ≤ min {2𝑠𝑠

𝐺𝐺2 , 1
𝐿𝐿} where L is the Lipschitz constant of the 

gradient ∇𝑔𝑔 and is given by the largest singular value of Φ, and G is the bound on the gradient, i.e. 
‖∇𝑔𝑔(𝜃𝜃)‖∞ ≤ 𝐺𝐺. In order to find the appropriate hyperparameter 𝜆𝜆 the fast monotone accelerated 
proximal gradient descent algorithm is run with 10 different values of 𝜆𝜆 logarithmically spaced between 
𝜆𝜆𝑚𝑚𝑖𝑖𝑚𝑚 and 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚: 

 𝜆𝜆𝑚𝑚𝑖𝑖𝑚𝑚 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 =

max((𝜃𝜃(0)−𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0)−𝑦𝑦))
2

)
2𝜂𝜂  (10) 

where: the step size 𝜂𝜂 = 𝑚𝑚𝑚𝑚𝑚𝑚 { 1
2|𝑆𝑆| , 1

𝐿𝐿} and |𝑆𝑆| is the number of nonzero elements in 𝜃𝜃(0). 
Grammar guided genetic programming 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

where: �̅�𝜃𝑖𝑖 = ∑ |𝜃𝜃𝑖𝑖|−|𝜃𝜃𝑖𝑖|𝑀𝑀
𝑖𝑖=1

∑ |𝜃𝜃𝑖𝑖|𝑀𝑀
𝑖𝑖=1

 is the normalized coefficients of the model terms. 

In the proposed method, three different variation operators are used, such as subtree crossover, subtree 
mutation and point mutation, which are illustrated in Figure 2 and 3. In subtree crossover, once two 
model terms are selected from two different individuals in the population, a random subtree is selected 
from one model term and a subtree is searched in the second model term so that once the subtrees are 
swapped the offspring are syntactically correct according to the grammar. In subtree mutation, once a 
model term is selected form an individual in the population, a random subtree in that model term is 
selected and replaced by a newly generated subtree in a manner so that the offspring is syntactically 
correct. In point mutation a terminal node is selected and is replaced by another terminal node. 
Figure 2. Illustration of subtree crossover 
Figure 3. Illustration of mutation operators: a) point mutation, b) subtree mutation 
Linear parameter varying models 
Linear parameter varying input-output models are capable of modeling nonlinear systems by having the 
model parameters being a function of a measurable time-varying signal called the scheduling variable, 

 where L is the Lipschitz constant 
of the gradient ∇g and is given by the largest 
singular value of Φ, and G is the bound on the 
gradient, i.e. ‖∇g(θ)‖∞ ≤ G. In order to find the ap-
propriate hyperparameter λ the fast monotone ac-
celerated proximal gradient descent algorithm is 
run with 10 different values of λ logarithmically 
spaced between λmin and λmax:

 

 𝑣𝑣𝑘𝑘 = 𝑓𝑓1(𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) (1) 
 𝛼𝛼𝑘𝑘 = 𝑓𝑓2(𝛼𝛼𝑘𝑘−1, … , 𝛼𝛼𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛) (2) 
 𝑦𝑦𝑘𝑘 = 𝐹𝐹(𝑦𝑦𝑘𝑘−1, … , 𝑦𝑦𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) + 𝑒𝑒𝑘𝑘 (3) 
 
 𝑦𝑦𝑘𝑘 = ∑ 𝜃𝜃𝑖𝑖𝜙𝜙𝑖𝑖

𝑀𝑀
𝑖𝑖=1 + 𝑒𝑒𝑘𝑘 (4) 

 
 𝜃𝜃∗ = argmin

𝜃𝜃
‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 (5) 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

 ℎ(𝑣𝑣) + 1
2 ‖𝑣𝑣 − 𝑞𝑞‖2 

2  (7) 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 

= 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) +
𝑡𝑡𝑗𝑗−1

𝑡𝑡𝑗𝑗
(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 

+ 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
 

𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 

=
max ((𝜃𝜃(0) − 𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0) − 𝑦𝑦))

2
)

2𝜂𝜂  

(10) 
 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

 
 𝑦𝑦𝑘𝑘 + ∑ 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘)𝑦𝑦𝑘𝑘−𝑖𝑖 =𝑛𝑛𝑚𝑚

𝑖𝑖=1  
 = ∑ 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘)𝑢𝑢𝑘𝑘−𝑗𝑗

𝑛𝑛𝑏𝑏
𝑗𝑗=1 + 𝑒𝑒𝑘𝑘   

(12) 
 
 
 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) = 𝑎𝑎𝑖𝑖,0 + ∑ 𝑎𝑎𝑖𝑖,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (13) 

 
  𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) = 𝑏𝑏𝑗𝑗,0 + ∑ 𝑏𝑏𝑗𝑗,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (14) 

 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … , −
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑚𝑚𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]

𝑇𝑇
, 

𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

 (10)

where: the step size 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 
where: ‖𝜃𝜃‖0 is the 𝑙𝑙0 pseudonorm, i.e. ‖𝜃𝜃‖0 = ∑ 𝟙𝟙𝜃𝜃𝑖𝑖≠0

𝑁𝑁
𝑖𝑖=1 . The problem (6) is nonconvex and has 

proven to be NP-hard [23] and therefore a suboptimal solution is found using a fast proximal gradient 
descent method [24] which converges to a critical point of 𝐹𝐹(𝜃𝜃). The proximal mapping of a function ℎ 
is given by the proximal operator 
 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣
 ℎ(𝑣𝑣) + 1

2 ‖𝑣𝑣 − 𝑞𝑞‖2 
2  (7) 

Since the minimization problem of (7) is separable the prox operator is the element wise hard-
thresholding operator with threshold 𝜏𝜏: 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

The fast monotone accelerated proximal gradient descent used in this paper, starts with the initial 
conditions 𝑧𝑧(1) = 𝜃𝜃(1) = 𝜃𝜃(0), 𝑡𝑡0 = 0, and update 𝜃𝜃(𝑗𝑗+1) according to 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

where: 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))), 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) + 𝑡𝑡𝑗𝑗−1
𝑡𝑡𝑗𝑗

(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
and n is the number of elements, 𝑗𝑗 is the iteration number, 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)) is a support projection 
operator that returns a vector whose elements with indices in 𝑧𝑧(𝑗𝑗) are the same as those in 𝑝𝑝(𝑗𝑗), and s is 
the step size.  
The algorithm converges when the step size 𝑠𝑠 ≤ min {2𝑠𝑠

𝐺𝐺2 , 1
𝐿𝐿} where L is the Lipschitz constant of the 

gradient ∇𝑔𝑔 and is given by the largest singular value of Φ, and G is the bound on the gradient, i.e. 
‖∇𝑔𝑔(𝜃𝜃)‖∞ ≤ 𝐺𝐺. In order to find the appropriate hyperparameter 𝜆𝜆 the fast monotone accelerated 
proximal gradient descent algorithm is run with 10 different values of 𝜆𝜆 logarithmically spaced between 
𝜆𝜆𝑚𝑚𝑖𝑖𝑚𝑚 and 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚: 

 𝜆𝜆𝑚𝑚𝑖𝑖𝑚𝑚 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 =

max((𝜃𝜃(0)−𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0)−𝑦𝑦))
2

)
2𝜂𝜂  (10) 

where: the step size 𝜂𝜂 = 𝑚𝑚𝑚𝑚𝑚𝑚 { 1
2|𝑆𝑆| , 1

𝐿𝐿} and |𝑆𝑆| is the number of nonzero elements in 𝜃𝜃(0). 
Grammar guided genetic programming 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

where: �̅�𝜃𝑖𝑖 = ∑ |𝜃𝜃𝑖𝑖|−|𝜃𝜃𝑖𝑖|𝑀𝑀
𝑖𝑖=1

∑ |𝜃𝜃𝑖𝑖|𝑀𝑀
𝑖𝑖=1

 is the normalized coefficients of the model terms. 

In the proposed method, three different variation operators are used, such as subtree crossover, subtree 
mutation and point mutation, which are illustrated in Figure 2 and 3. In subtree crossover, once two 
model terms are selected from two different individuals in the population, a random subtree is selected 
from one model term and a subtree is searched in the second model term so that once the subtrees are 
swapped the offspring are syntactically correct according to the grammar. In subtree mutation, once a 
model term is selected form an individual in the population, a random subtree in that model term is 
selected and replaced by a newly generated subtree in a manner so that the offspring is syntactically 
correct. In point mutation a terminal node is selected and is replaced by another terminal node. 
Figure 2. Illustration of subtree crossover 
Figure 3. Illustration of mutation operators: a) point mutation, b) subtree mutation 
Linear parameter varying models 
Linear parameter varying input-output models are capable of modeling nonlinear systems by having the 
model parameters being a function of a measurable time-varying signal called the scheduling variable, 

 and |S| is 
the number of nonzero elements in θ(0).

Grammar guided genetic programming

Traditional genetic programming relies on the 
closure property [25], i.e. that each non-terminal 
can accept any value from either the terminal set 
of as the return value of every other non-terminal, 
in order to produce admissible offsprings after un-
dergoing a variation operator such as crossover or 
mutation. The closure requirement is restrictive 
as it does not allow to bias the search space other 
than selecting the terminal and non-terminal set; 
to overcome this, grammars, such as context-free 
grammars (CFG), can be used to bias the search 
space while making sure that the produced off-
spring are syntactically correct. A context-free 
grammar G is the four-tuple G = {S,N,Σ,P} where 
S is the start symbol, N is the set of all non-
terminal symbols, Σ is the set of all terminal 
symbols and N and Σ are disjoint, and P is 
the set of all production rules. All expressions 
have the start symbol as the root node, the non-
terminal symbols are the internal nodes while 
the terminal symbols are the leaves of the tree.

In this study two different grammars were 
used to obtain the dynamic model of the over-
head crane in terms of varying conditions: the 
rope length l and the mass of the payload m. 
The grammar used for representing individuals 
consists of a terminal set which includes lagged 
input and output variables, the rope length l and 
the mass of the payload m, which are assumed as 
the measurable parameters. The two grammars, 
presented in the Backus-Naur form (BNF) in 
Table 1, were tested to compare performances of 
the G3P algorithm used to construct the NARX 
model given in the linear in the parameters form 
in (4). The simpler grammar, which we call poly-
nomial grammar, allows the model terms to be 
monomials in the lagged outputs and inputs, but 
also allows for the multiplication, protected divi-
sion, and square root operators for the variables  
and . The second grammar, which we call the ex-
tended grammar, contains an extended function 
set and the production rules. The number of input 
and output delays for both extended and polyno-
mial models were set to 5.

Variation operators

New individuals are produced through the 
variation operators which modify an existing 
individual in a stochastic manner. An individual 
needs to be selected before the variation operators 
are applied to it to produce offspring in the next 
generation. In the proposed method, selection oc-
curs in two stages: in the first stage an individual 
is selected from the population using tournament 
selection, in the second stage a model term is se-
lected from the individual. The probability of se-
lecting a model term is given by 

 

 𝑣𝑣𝑘𝑘 = 𝑓𝑓1(𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) (1) 
 𝛼𝛼𝑘𝑘 = 𝑓𝑓2(𝛼𝛼𝑘𝑘−1, … , 𝛼𝛼𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛) (2) 
 𝑦𝑦𝑘𝑘 = 𝐹𝐹(𝑦𝑦𝑘𝑘−1, … , 𝑦𝑦𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) + 𝑒𝑒𝑘𝑘 (3) 
 
 𝑦𝑦𝑘𝑘 = ∑ 𝜃𝜃𝑖𝑖𝜙𝜙𝑖𝑖

𝑀𝑀
𝑖𝑖=1 + 𝑒𝑒𝑘𝑘 (4) 

 
 𝜃𝜃∗ = argmin

𝜃𝜃
‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 (5) 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

 ℎ(𝑣𝑣) + 1
2 ‖𝑣𝑣 − 𝑞𝑞‖2 

2  (7) 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 

= 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) +
𝑡𝑡𝑗𝑗−1

𝑡𝑡𝑗𝑗
(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 

+ 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
 

𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 

=
max ((𝜃𝜃(0) − 𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0) − 𝑦𝑦))

2
)

2𝜂𝜂  

(10) 
 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

 
 𝑦𝑦𝑘𝑘 + ∑ 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘)𝑦𝑦𝑘𝑘−𝑖𝑖 =𝑛𝑛𝑚𝑚

𝑖𝑖=1  
 = ∑ 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘)𝑢𝑢𝑘𝑘−𝑗𝑗

𝑛𝑛𝑏𝑏
𝑗𝑗=1 + 𝑒𝑒𝑘𝑘   

(12) 
 
 
 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) = 𝑎𝑎𝑖𝑖,0 + ∑ 𝑎𝑎𝑖𝑖,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (13) 

 
  𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) = 𝑏𝑏𝑗𝑗,0 + ∑ 𝑏𝑏𝑗𝑗,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (14) 

 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … , −
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑚𝑚𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]

𝑇𝑇
, 

𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

 (11)

where: 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 
where: ‖𝜃𝜃‖0 is the 𝑙𝑙0 pseudonorm, i.e. ‖𝜃𝜃‖0 = ∑ 𝟙𝟙𝜃𝜃𝑖𝑖≠0

𝑁𝑁
𝑖𝑖=1 . The problem (6) is nonconvex and has 

proven to be NP-hard [23] and therefore a suboptimal solution is found using a fast proximal gradient 
descent method [24] which converges to a critical point of 𝐹𝐹(𝜃𝜃). The proximal mapping of a function ℎ 
is given by the proximal operator 
 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣
 ℎ(𝑣𝑣) + 1

2 ‖𝑣𝑣 − 𝑞𝑞‖2 
2  (7) 

Since the minimization problem of (7) is separable the prox operator is the element wise hard-
thresholding operator with threshold 𝜏𝜏: 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

The fast monotone accelerated proximal gradient descent used in this paper, starts with the initial 
conditions 𝑧𝑧(1) = 𝜃𝜃(1) = 𝜃𝜃(0), 𝑡𝑡0 = 0, and update 𝜃𝜃(𝑗𝑗+1) according to 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

where: 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))), 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) + 𝑡𝑡𝑗𝑗−1
𝑡𝑡𝑗𝑗

(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
and n is the number of elements, 𝑗𝑗 is the iteration number, 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)) is a support projection 
operator that returns a vector whose elements with indices in 𝑧𝑧(𝑗𝑗) are the same as those in 𝑝𝑝(𝑗𝑗), and s is 
the step size.  
The algorithm converges when the step size 𝑠𝑠 ≤ min {2𝑠𝑠

𝐺𝐺2 , 1
𝐿𝐿} where L is the Lipschitz constant of the 

gradient ∇𝑔𝑔 and is given by the largest singular value of Φ, and G is the bound on the gradient, i.e. 
‖∇𝑔𝑔(𝜃𝜃)‖∞ ≤ 𝐺𝐺. In order to find the appropriate hyperparameter 𝜆𝜆 the fast monotone accelerated 
proximal gradient descent algorithm is run with 10 different values of 𝜆𝜆 logarithmically spaced between 
𝜆𝜆𝑚𝑚𝑖𝑖𝑚𝑚 and 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚: 

 𝜆𝜆𝑚𝑚𝑖𝑖𝑚𝑚 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 =

max((𝜃𝜃(0)−𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0)−𝑦𝑦))
2

)
2𝜂𝜂  (10) 

where: the step size 𝜂𝜂 = 𝑚𝑚𝑚𝑚𝑚𝑚 { 1
2|𝑆𝑆| , 1

𝐿𝐿} and |𝑆𝑆| is the number of nonzero elements in 𝜃𝜃(0). 
Grammar guided genetic programming 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

where: �̅�𝜃𝑖𝑖 = ∑ |𝜃𝜃𝑖𝑖|−|𝜃𝜃𝑖𝑖|𝑀𝑀
𝑖𝑖=1

∑ |𝜃𝜃𝑖𝑖|𝑀𝑀
𝑖𝑖=1

 is the normalized coefficients of the model terms. 

In the proposed method, three different variation operators are used, such as subtree crossover, subtree 
mutation and point mutation, which are illustrated in Figure 2 and 3. In subtree crossover, once two 
model terms are selected from two different individuals in the population, a random subtree is selected 
from one model term and a subtree is searched in the second model term so that once the subtrees are 
swapped the offspring are syntactically correct according to the grammar. In subtree mutation, once a 
model term is selected form an individual in the population, a random subtree in that model term is 
selected and replaced by a newly generated subtree in a manner so that the offspring is syntactically 
correct. In point mutation a terminal node is selected and is replaced by another terminal node. 
Figure 2. Illustration of subtree crossover 
Figure 3. Illustration of mutation operators: a) point mutation, b) subtree mutation 
Linear parameter varying models 
Linear parameter varying input-output models are capable of modeling nonlinear systems by having the 
model parameters being a function of a measurable time-varying signal called the scheduling variable, 

 is the normalized coef-
ficients of the model terms.

In the proposed method, three different varia-
tion operators are used, such as subtree crossover, 

Table 1. The grammar used for the G3P extended and polynomial model 
Table 1. The grammar used for the G3P extended and polynomial model 

Grammar for extended model Grammar for polynomial model 
E  :: =  { EE  √E  tanhEp  pdivEpEp  EP  Tuy } 
Ep  :: = { +Ep Ep  +Epε  EpEp  Epε  Tuy } 
P  :: = { PP pdivPP  √P  TP } 
Tuy  :: = { uk-1 … uk-5  yk-1 … yk-5 } 
TP  ::= { m  l } 

S  :: = { M } 
M :: = { MM  MP  Tuy } 
P  :: = { PP pdivPP  √P  TP } 
Tuy  :: = { uk-1 … uk-5  yk-1 … yk-5 } 
TP  :: = { m  l } 
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Figure 2. Illustration of subtree crossover

a) b)

Figure 3. Illustration of mutation operators: a) point mutation, b) subtree mutation

subtree mutation and point mutation, which are 
illustrated in Figure 2 and 3. In subtree crossover, 
once two model terms are selected from two dif-
ferent individuals in the population, a random 
subtree is selected from one model term and a 
subtree is searched in the second model term so 

that once the subtrees are swapped the offspring 
are syntactically correct according to the gram-
mar. In subtree mutation, once a model term is 
selected form an individual in the population, a 
random subtree in that model term is selected 
and replaced by a newly generated subtree in a 
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manner so that the offspring is syntactically cor-
rect. In point mutation a terminal node is selected 
and is replaced by another terminal node.

Linear parameter varying models

Linear parameter varying input-output mod-
els are capable of modeling nonlinear systems 
by having the model parameters being a func-
tion of a measurable time-varying signal called 
the scheduling variable, while there exists only a 
linear relationship between the lagged inputs and 
outputs. Therefore, an LPV-ARX model, with the 
rope length l and payload mass m as the schedul-
ing variables, was chosen to perform a compara-
tive study with the G3P models. A single input 
single output (SISO) discrete-time linear param-
eter varying system can be written as

 

 𝑣𝑣𝑘𝑘 = 𝑓𝑓1(𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) (1) 
 𝛼𝛼𝑘𝑘 = 𝑓𝑓2(𝛼𝛼𝑘𝑘−1, … , 𝛼𝛼𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛) (2) 
 𝑦𝑦𝑘𝑘 = 𝐹𝐹(𝑦𝑦𝑘𝑘−1, … , 𝑦𝑦𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) + 𝑒𝑒𝑘𝑘 (3) 
 
 𝑦𝑦𝑘𝑘 = ∑ 𝜃𝜃𝑖𝑖𝜙𝜙𝑖𝑖

𝑀𝑀
𝑖𝑖=1 + 𝑒𝑒𝑘𝑘 (4) 

 
 𝜃𝜃∗ = argmin

𝜃𝜃
‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 (5) 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

 ℎ(𝑣𝑣) + 1
2 ‖𝑣𝑣 − 𝑞𝑞‖2 

2  (7) 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 

= 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) +
𝑡𝑡𝑗𝑗−1

𝑡𝑡𝑗𝑗
(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 

+ 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
 

𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 

=
max ((𝜃𝜃(0) − 𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0) − 𝑦𝑦))

2
)

2𝜂𝜂  

(10) 
 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

 
 𝑦𝑦𝑘𝑘 + ∑ 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘)𝑦𝑦𝑘𝑘−𝑖𝑖 =𝑛𝑛𝑚𝑚

𝑖𝑖=1  
 = ∑ 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘)𝑢𝑢𝑘𝑘−𝑗𝑗

𝑛𝑛𝑏𝑏
𝑗𝑗=1 + 𝑒𝑒𝑘𝑘   

(12) 
 
 
 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) = 𝑎𝑎𝑖𝑖,0 + ∑ 𝑎𝑎𝑖𝑖,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (13) 

 
  𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) = 𝑏𝑏𝑗𝑗,0 + ∑ 𝑏𝑏𝑗𝑗,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (14) 

 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … , −
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑚𝑚𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]

𝑇𝑇
, 

𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

 (12)

where: p is the scheduling variable and it is as-
sumed that the functions ai(pk) and bj(pk) 
can be linearly parameterized as follows

 

 𝑣𝑣𝑘𝑘 = 𝑓𝑓1(𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) (1) 
 𝛼𝛼𝑘𝑘 = 𝑓𝑓2(𝛼𝛼𝑘𝑘−1, … , 𝛼𝛼𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛) (2) 
 𝑦𝑦𝑘𝑘 = 𝐹𝐹(𝑦𝑦𝑘𝑘−1, … , 𝑦𝑦𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) + 𝑒𝑒𝑘𝑘 (3) 
 
 𝑦𝑦𝑘𝑘 = ∑ 𝜃𝜃𝑖𝑖𝜙𝜙𝑖𝑖

𝑀𝑀
𝑖𝑖=1 + 𝑒𝑒𝑘𝑘 (4) 

 
 𝜃𝜃∗ = argmin

𝜃𝜃
‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 (5) 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

 ℎ(𝑣𝑣) + 1
2 ‖𝑣𝑣 − 𝑞𝑞‖2 

2  (7) 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 

= 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) +
𝑡𝑡𝑗𝑗−1

𝑡𝑡𝑗𝑗
(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 

+ 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
 

𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 

=
max ((𝜃𝜃(0) − 𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0) − 𝑦𝑦))

2
)

2𝜂𝜂  

(10) 
 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

 
 𝑦𝑦𝑘𝑘 + ∑ 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘)𝑦𝑦𝑘𝑘−𝑖𝑖 =𝑛𝑛𝑚𝑚

𝑖𝑖=1  
 = ∑ 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘)𝑢𝑢𝑘𝑘−𝑗𝑗

𝑛𝑛𝑏𝑏
𝑗𝑗=1 + 𝑒𝑒𝑘𝑘   

(12) 
 
 
 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) = 𝑎𝑎𝑖𝑖,0 + ∑ 𝑎𝑎𝑖𝑖,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (13) 

 
  𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) = 𝑏𝑏𝑗𝑗,0 + ∑ 𝑏𝑏𝑗𝑗,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (14) 

 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … , −
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑚𝑚𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]

𝑇𝑇
, 

𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

 (13)

 

 𝑣𝑣𝑘𝑘 = 𝑓𝑓1(𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) (1) 
 𝛼𝛼𝑘𝑘 = 𝑓𝑓2(𝛼𝛼𝑘𝑘−1, … , 𝛼𝛼𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛) (2) 
 𝑦𝑦𝑘𝑘 = 𝐹𝐹(𝑦𝑦𝑘𝑘−1, … , 𝑦𝑦𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) + 𝑒𝑒𝑘𝑘 (3) 
 
 𝑦𝑦𝑘𝑘 = ∑ 𝜃𝜃𝑖𝑖𝜙𝜙𝑖𝑖

𝑀𝑀
𝑖𝑖=1 + 𝑒𝑒𝑘𝑘 (4) 

 
 𝜃𝜃∗ = argmin

𝜃𝜃
‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 (5) 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

 ℎ(𝑣𝑣) + 1
2 ‖𝑣𝑣 − 𝑞𝑞‖2 

2  (7) 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 

= 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) +
𝑡𝑡𝑗𝑗−1

𝑡𝑡𝑗𝑗
(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 

+ 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
 

𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 

=
max ((𝜃𝜃(0) − 𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0) − 𝑦𝑦))

2
)

2𝜂𝜂  

(10) 
 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

 
 𝑦𝑦𝑘𝑘 + ∑ 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘)𝑦𝑦𝑘𝑘−𝑖𝑖 =𝑛𝑛𝑚𝑚

𝑖𝑖=1  
 = ∑ 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘)𝑢𝑢𝑘𝑘−𝑗𝑗

𝑛𝑛𝑏𝑏
𝑗𝑗=1 + 𝑒𝑒𝑘𝑘   

(12) 
 
 
 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) = 𝑎𝑎𝑖𝑖,0 + ∑ 𝑎𝑎𝑖𝑖,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (13) 

 
  𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) = 𝑏𝑏𝑗𝑗,0 + ∑ 𝑏𝑏𝑗𝑗,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (14) 

 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … , −
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑚𝑚𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]

𝑇𝑇
, 

𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

 (14)
where: ψ is a set of basis functions, which in the 

comparative study will be a set of mono-
mials of the scheduling variables l and m, 
and ai,0, ... , ai,q and  bj,0, ... , bj,q are unknown 
parameters. Under those assumptions, the 
model (12) can be rewritten as

 

 𝑣𝑣𝑘𝑘 = 𝑓𝑓1(𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) (1) 
 𝛼𝛼𝑘𝑘 = 𝑓𝑓2(𝛼𝛼𝑘𝑘−1, … , 𝛼𝛼𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑣𝑣𝑘𝑘−1, … , 𝑣𝑣𝑘𝑘−𝑛𝑛𝑛𝑛) (2) 
 𝑦𝑦𝑘𝑘 = 𝐹𝐹(𝑦𝑦𝑘𝑘−1, … , 𝑦𝑦𝑘𝑘−𝑛𝑛𝑛𝑛, 𝑢𝑢𝑘𝑘−1, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑛𝑛) + 𝑒𝑒𝑘𝑘 (3) 
 
 𝑦𝑦𝑘𝑘 = ∑ 𝜃𝜃𝑖𝑖𝜙𝜙𝑖𝑖

𝑀𝑀
𝑖𝑖=1 + 𝑒𝑒𝑘𝑘 (4) 

 
 𝜃𝜃∗ = argmin

𝜃𝜃
‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 (5) 

 𝐹𝐹(𝜃𝜃) = 𝑔𝑔(𝜃𝜃) + ℎ(𝜃𝜃) = 1
2 ‖Φ𝜃𝜃 − 𝑦𝑦‖2

2 + 𝜆𝜆‖𝜃𝜃‖0 (6) 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥ℎ(𝑞𝑞) = 𝑎𝑎𝑝𝑝𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

 ℎ(𝑣𝑣) + 1
2 ‖𝑣𝑣 − 𝑞𝑞‖2 

2  (7) 

 [𝑇𝑇𝜏𝜏(𝑞𝑞)]𝑗𝑗 = { 0, |𝑞𝑞𝑗𝑗| ≤ 𝜏𝜏
𝑞𝑞𝑗𝑗, otherwise , 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (8) 

 

 𝜃𝜃(𝑗𝑗+1) = {𝑧𝑧(𝑗𝑗+1), 𝐹𝐹(𝑧𝑧(𝑗𝑗+1)) ≤ 𝐹𝐹(𝜃𝜃(𝑗𝑗))
𝜃𝜃(𝑗𝑗), otherwise

 (9) 

 
𝑧𝑧(𝑗𝑗+1) = prox𝑠𝑠𝑠𝑠‖∙‖0 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) = 

= 𝑇𝑇√2𝑠𝑠𝑠𝑠 (𝑤𝑤(𝑗𝑗) − 𝑠𝑠∇𝑔𝑔(𝑤𝑤(𝑗𝑗))) 
𝑤𝑤(𝑗𝑗) = 𝑃𝑃𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠(𝑧𝑧(𝑗𝑗))(𝑝𝑝(𝑗𝑗)), 

𝑝𝑝(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) +
𝑡𝑡𝑗𝑗−1

𝑡𝑡𝑗𝑗
(𝑧𝑧(𝑗𝑗) − 𝜃𝜃(𝑗𝑗)) + 

+ 𝑡𝑡𝑗𝑗−1−1
𝑡𝑡𝑗𝑗

(𝜃𝜃(𝑗𝑗) − 𝜃𝜃(𝑗𝑗−1)), 

𝑡𝑡𝑗𝑗+1 =
√1+4𝑡𝑡𝑗𝑗

2+1

2 , 
 

𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
50000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 

=
max ((𝜃𝜃(0) − 𝜂𝜂Φ𝑇𝑇(Φ𝜃𝜃(0) − 𝑦𝑦))

2
)

2𝜂𝜂  

(10) 
 
 𝑃𝑃 = exp �̅�𝜃𝑖𝑖

∑ exp �̅�𝜃𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

 
 𝑦𝑦𝑘𝑘 + ∑ 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘)𝑦𝑦𝑘𝑘−𝑖𝑖 =𝑛𝑛𝑚𝑚

𝑖𝑖=1  
 = ∑ 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘)𝑢𝑢𝑘𝑘−𝑗𝑗

𝑛𝑛𝑏𝑏
𝑗𝑗=1 + 𝑒𝑒𝑘𝑘   

(12) 
 
 
 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) = 𝑎𝑎𝑖𝑖,0 + ∑ 𝑎𝑎𝑖𝑖,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (13) 

 
  𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) = 𝑏𝑏𝑗𝑗,0 + ∑ 𝑏𝑏𝑗𝑗,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (14) 

 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … , −
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑚𝑚𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]

𝑇𝑇
, 

𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

 (15)
where:

Figure 2. Illustration of subtree crossover 
Figure 3. Illustration of mutation operators: a) point mutation, b) subtree mutation 
Linear parameter varying models 
Linear parameter varying input-output models are capable of modeling nonlinear systems by having the 
model parameters being a function of a measurable time-varying signal called the scheduling variable, 
while there exists only a linear relationship between the lagged inputs and outputs. Therefore, an LPV-
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where: 𝜓𝜓 is a set of basis functions, which in the comparative study will be a set of monomials of the 
scheduling variables 𝑙𝑙 and 𝑚𝑚, and 𝑎𝑎𝑖𝑖,0, … , 𝑎𝑎𝑖𝑖,𝑞𝑞 and 𝑏𝑏𝑗𝑗,0, … , 𝑏𝑏𝑗𝑗,𝑞𝑞 are unknown parameters. Under those 
assumptions, the model (12) can be rewritten as 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
where: 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … ,
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑎𝑎𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]
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𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

𝜃𝜃 = [𝑎𝑎1,0, 𝑎𝑎1,1, … , 𝑎𝑎𝑛𝑛𝑎𝑎,𝑛𝑛𝑞𝑞, 𝑏𝑏0,0, 𝑏𝑏0,1, … , 𝑏𝑏𝑛𝑛𝑏𝑏,𝑛𝑛𝑞𝑞]
𝑇𝑇

. 
Including all possible model terms can lead to overparameterization and result in a more complex with 
reduced accuracy due to overfitting. Thus, the SPARSEVA method [26] is used to find an LPV-ARX 
model [27] with a reduced number of model terms by solving the following minimization problem 
 𝑚𝑚𝑚𝑚𝑚𝑚

𝜃𝜃
 ‖𝜃𝜃‖1 (16) 

 𝑠𝑠. 𝑡𝑡.: 𝑉𝑉𝑁𝑁 (𝜃𝜃) ≤ 𝑉𝑉𝑁𝑁(𝜃𝜃𝑁𝑁
𝐿𝐿𝐿𝐿)(1 + 𝜀𝜀𝑁𝑁)  

where: 𝑉𝑉𝑁𝑁(𝜃𝜃) = 1
𝑁𝑁 ‖𝛷𝛷𝜃𝜃 − 𝑦𝑦‖2

2, 𝜃𝜃𝑁𝑁
𝐿𝐿𝐿𝐿 is the unpenalized least squares solution of 𝑉𝑉𝑁𝑁, and 𝜀𝜀𝑁𝑁 > 0 is a 

predefined quantity. 
Following [26], the value of 𝜀𝜀𝑁𝑁 = 2𝑛𝑛

𝑁𝑁 , which corresponds to Akaike’s information criterion, is used. 
Additionally, since the 𝑙𝑙1 penalty biases the solution, (16) is used to find the support of 𝜃𝜃 and the non-
zero values are re-estimated using least-squares, called SPARSEVA-RE. The solution of (16) was 
solved using the SPGL1 algorithm [28]. 
EXPERIMENTAL RESULTS 
The experimental data was obtained in series of 10 experiments carried out on a laboratory-scale 
overhead crane (Fig. 1) for different operating points, rope lengths l = {0.8, 1.1, 1.4, 1.7, 2.0} m and 
payload masses m = {10, 30, 50} kg. The input signal u was a sequence of step functions with varying 
amplitude in order to excite the underactuated part of the overhead crane. The data from experiment 
with l = 1.1 m and m = 50 kg, and experiment with l = 1.7 m and m = 10 kg were used as the testing 
data, while the rest was used as the training data to evolve the G3P-NARX and LPV-ARX models. 
In every generation of G3P evolution the training data is resampled with 60% used by the fast monotone 
accelerated proximal gradient descent algorithm to obtain the model coefficients while the remaining 
40% is used to select the appropriate hyperparameter 𝜆𝜆. The fitness of the individual is the root mean 
square error (RMSE) of the model predictive output (MPO) on the entire training data set: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑦𝑦𝑖𝑖−�̂�𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ 𝑦𝑦𝑖𝑖
2𝑁𝑁

𝑖𝑖=1
 (17) 

where: 𝑦𝑦 and �̂�𝑦 are observed and predicted values, respectively. 
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Including all possible model terms can lead to overparameterization and result in a more complex with 
reduced accuracy due to overfitting. Thus, the SPARSEVA method [26] is used to find an LPV-ARX 
model [27] with a reduced number of model terms by solving the following minimization problem 
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𝑁𝑁 , which corresponds to Akaike’s information criterion, is used. 
Additionally, since the 𝑙𝑙1 penalty biases the solution, (16) is used to find the support of 𝜃𝜃 and the non-
zero values are re-estimated using least-squares, called SPARSEVA-RE. The solution of (16) was 
solved using the SPGL1 algorithm [28]. 
EXPERIMENTAL RESULTS 
The experimental data was obtained in series of 10 experiments carried out on a laboratory-scale 
overhead crane (Fig. 1) for different operating points, rope lengths l = {0.8, 1.1, 1.4, 1.7, 2.0} m and 
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40% is used to select the appropriate hyperparameter 𝜆𝜆. The fitness of the individual is the root mean 
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 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑦𝑦𝑖𝑖−�̂�𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ 𝑦𝑦𝑖𝑖
2𝑁𝑁

𝑖𝑖=1
 (17) 

where: 𝑦𝑦 and �̂�𝑦 are observed and predicted values, respectively. 
 

 is the unpe-
nalized least squares solution of , and  is a 
predefined quantity.

Following [26], the value of 

Figure 2. Illustration of subtree crossover 
Figure 3. Illustration of mutation operators: a) point mutation, b) subtree mutation 
Linear parameter varying models 
Linear parameter varying input-output models are capable of modeling nonlinear systems by having the 
model parameters being a function of a measurable time-varying signal called the scheduling variable, 
while there exists only a linear relationship between the lagged inputs and outputs. Therefore, an LPV-
ARX model, with the rope length l and payload mass m as the scheduling variables, was chosen to 
perform a comparative study with the G3P models. A single input single output (SISO) discrete-time 
linear parameter varying system can be written as 
 𝑦𝑦𝑘𝑘 + ∑ 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘)𝑦𝑦𝑘𝑘−𝑖𝑖 = ∑ 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘)𝑢𝑢𝑘𝑘−𝑗𝑗

𝑛𝑛𝑏𝑏
𝑗𝑗=1 + 𝑒𝑒𝑘𝑘

𝑛𝑛𝑎𝑎
𝑖𝑖=1  (12) 

where: 𝑝𝑝 is the scheduling variable and it is assumed that the functions 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) and 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) can be linearly 
parameterized as follows 
 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) = 𝑎𝑎𝑖𝑖,0 + ∑ 𝑎𝑎𝑖𝑖,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (13) 

  𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) = 𝑏𝑏𝑗𝑗,0 + ∑ 𝑏𝑏𝑗𝑗,𝑞𝑞𝜓𝜓𝑞𝑞
𝑛𝑛𝑞𝑞
𝑞𝑞=1  (14) 

where: 𝜓𝜓 is a set of basis functions, which in the comparative study will be a set of monomials of the 
scheduling variables 𝑙𝑙 and 𝑚𝑚, and 𝑎𝑎𝑖𝑖,0, … , 𝑎𝑎𝑖𝑖,𝑞𝑞 and 𝑏𝑏𝑗𝑗,0, … , 𝑏𝑏𝑗𝑗,𝑞𝑞 are unknown parameters. Under those 
assumptions, the model (12) can be rewritten as 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
where: 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … ,
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑎𝑎𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]

𝑇𝑇
, 

𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

𝜃𝜃 = [𝑎𝑎1,0, 𝑎𝑎1,1, … , 𝑎𝑎𝑛𝑛𝑎𝑎,𝑛𝑛𝑞𝑞, 𝑏𝑏0,0, 𝑏𝑏0,1, … , 𝑏𝑏𝑛𝑛𝑏𝑏,𝑛𝑛𝑞𝑞]
𝑇𝑇
. 

Including all possible model terms can lead to overparameterization and result in a more complex with 
reduced accuracy due to overfitting. Thus, the SPARSEVA method [26] is used to find an LPV-ARX 
model [27] with a reduced number of model terms by solving the following minimization problem 
 𝑚𝑚𝑚𝑚𝑚𝑚

𝜃𝜃
 ‖𝜃𝜃‖1 (16) 

 𝑠𝑠. 𝑡𝑡.: 𝑉𝑉𝑁𝑁 (𝜃𝜃) ≤ 𝑉𝑉𝑁𝑁(𝜃𝜃𝑁𝑁
𝐿𝐿𝐿𝐿)(1 + 𝜀𝜀𝑁𝑁)  

where: 𝑉𝑉𝑁𝑁(𝜃𝜃) = 1
𝑁𝑁 ‖𝛷𝛷𝜃𝜃 − 𝑦𝑦‖2

2, 𝜃𝜃𝑁𝑁
𝐿𝐿𝐿𝐿 is the unpenalized least squares solution of 𝑉𝑉𝑁𝑁, and 𝜀𝜀𝑁𝑁 > 0 is a 

predefined quantity. 
Following [26], the value of 𝜀𝜀𝑁𝑁 = 2𝑛𝑛

𝑁𝑁 , which corresponds to Akaike’s information criterion, is used. 
Additionally, since the 𝑙𝑙1 penalty biases the solution, (16) is used to find the support of 𝜃𝜃 and the non-
zero values are re-estimated using least-squares, called SPARSEVA-RE. The solution of (16) was 
solved using the SPGL1 algorithm [28]. 
EXPERIMENTAL RESULTS 
The experimental data was obtained in series of 10 experiments carried out on a laboratory-scale 
overhead crane (Fig. 1) for different operating points, rope lengths l = {0.8, 1.1, 1.4, 1.7, 2.0} m and 
payload masses m = {10, 30, 50} kg. The input signal u was a sequence of step functions with varying 
amplitude in order to excite the underactuated part of the overhead crane. The data from experiment 
with l = 1.1 m and m = 50 kg, and experiment with l = 1.7 m and m = 10 kg were used as the testing 
data, while the rest was used as the training data to evolve the G3P-NARX and LPV-ARX models. 
In every generation of G3P evolution the training data is resampled with 60% used by the fast monotone 
accelerated proximal gradient descent algorithm to obtain the model coefficients while the remaining 
40% is used to select the appropriate hyperparameter 𝜆𝜆. The fitness of the individual is the root mean 
square error (RMSE) of the model predictive output (MPO) on the entire training data set: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑦𝑦𝑖𝑖−�̂�𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ 𝑦𝑦𝑖𝑖
2𝑁𝑁

𝑖𝑖=1
 (17) 

where: 𝑦𝑦 and �̂�𝑦 are observed and predicted values, respectively. 
 

, which 
corresponds to Akaike’s information criterion, is 
used. Additionally, since the l1 penalty biases the 
solution, (16) is used to find the support of  and 
the non-zero values are re-estimated using least-
squares, called SPARSEVA-RE. The solution of 
(16) was solved using the SPGL1 algorithm [28].

EXPERIMENTAL RESULTS

The experimental data was obtained in series 
of 10 experiments carried out on a laboratory-
scale overhead crane (Fig. 1) for different operat-
ing points, rope lengths l = {0.8, 1.1, 1.4, 1.7, 2.0} 
m and payload masses m = {10, 30, 50} kg. The 
input signal u was a sequence of step functions 
with varying amplitude in order to excite the un-
deractuated part of the overhead crane. The data 
from experiment with l = 1.1 m and m = 50 kg, 
and experiment with l = 1.7 m and m = 10 kg were 
used as the testing data, while the rest was used 
as the training data to evolve the G3P-NARX 
and LPV-ARX models.

In every generation of G3P evolution the 
training data is resampled with 60% used by 
the fast monotone accelerated proximal gradi-
ent descent algorithm to obtain the model co-
efficients while the remaining 40% is used to 
select the appropriate hyperparameter . The fit-
ness of the individual is the root mean square 
error (RMSE) of the model predictive output 
(MPO) on the entire training data set:

 

Figure 2. Illustration of subtree crossover 
Figure 3. Illustration of mutation operators: a) point mutation, b) subtree mutation 
Linear parameter varying models 
Linear parameter varying input-output models are capable of modeling nonlinear systems by having the 
model parameters being a function of a measurable time-varying signal called the scheduling variable, 
while there exists only a linear relationship between the lagged inputs and outputs. Therefore, an LPV-
ARX model, with the rope length l and payload mass m as the scheduling variables, was chosen to 
perform a comparative study with the G3P models. A single input single output (SISO) discrete-time 
linear parameter varying system can be written as 
 𝑦𝑦𝑘𝑘 + ∑ 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘)𝑦𝑦𝑘𝑘−𝑖𝑖 = ∑ 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘)𝑢𝑢𝑘𝑘−𝑗𝑗

𝑛𝑛𝑏𝑏
𝑗𝑗=1 + 𝑒𝑒𝑘𝑘

𝑛𝑛𝑎𝑎
𝑖𝑖=1  (12) 

where: 𝑝𝑝 is the scheduling variable and it is assumed that the functions 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) and 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) can be linearly 
parameterized as follows 
 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) = 𝑎𝑎𝑖𝑖,0 + ∑ 𝑎𝑎𝑖𝑖,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (13) 

  𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) = 𝑏𝑏𝑗𝑗,0 + ∑ 𝑏𝑏𝑗𝑗,𝑞𝑞𝜓𝜓𝑞𝑞
𝑛𝑛𝑞𝑞
𝑞𝑞=1  (14) 

where: 𝜓𝜓 is a set of basis functions, which in the comparative study will be a set of monomials of the 
scheduling variables 𝑙𝑙 and 𝑚𝑚, and 𝑎𝑎𝑖𝑖,0, … , 𝑎𝑎𝑖𝑖,𝑞𝑞 and 𝑏𝑏𝑗𝑗,0, … , 𝑏𝑏𝑗𝑗,𝑞𝑞 are unknown parameters. Under those 
assumptions, the model (12) can be rewritten as 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
where: 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … ,
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑎𝑎𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]

𝑇𝑇
, 

𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

𝜃𝜃 = [𝑎𝑎1,0, 𝑎𝑎1,1, … , 𝑎𝑎𝑛𝑛𝑎𝑎,𝑛𝑛𝑞𝑞, 𝑏𝑏0,0, 𝑏𝑏0,1, … , 𝑏𝑏𝑛𝑛𝑏𝑏,𝑛𝑛𝑞𝑞]
𝑇𝑇

. 
Including all possible model terms can lead to overparameterization and result in a more complex with 
reduced accuracy due to overfitting. Thus, the SPARSEVA method [26] is used to find an LPV-ARX 
model [27] with a reduced number of model terms by solving the following minimization problem 
 𝑚𝑚𝑚𝑚𝑚𝑚

𝜃𝜃
 ‖𝜃𝜃‖1 (16) 

 𝑠𝑠. 𝑡𝑡.: 𝑉𝑉𝑁𝑁 (𝜃𝜃) ≤ 𝑉𝑉𝑁𝑁(𝜃𝜃𝑁𝑁
𝐿𝐿𝐿𝐿)(1 + 𝜀𝜀𝑁𝑁)  

where: 𝑉𝑉𝑁𝑁(𝜃𝜃) = 1
𝑁𝑁 ‖𝛷𝛷𝜃𝜃 − 𝑦𝑦‖2

2, 𝜃𝜃𝑁𝑁
𝐿𝐿𝐿𝐿 is the unpenalized least squares solution of 𝑉𝑉𝑁𝑁, and 𝜀𝜀𝑁𝑁 > 0 is a 

predefined quantity. 
Following [26], the value of 𝜀𝜀𝑁𝑁 = 2𝑛𝑛

𝑁𝑁 , which corresponds to Akaike’s information criterion, is used. 
Additionally, since the 𝑙𝑙1 penalty biases the solution, (16) is used to find the support of 𝜃𝜃 and the non-
zero values are re-estimated using least-squares, called SPARSEVA-RE. The solution of (16) was 
solved using the SPGL1 algorithm [28]. 
EXPERIMENTAL RESULTS 
The experimental data was obtained in series of 10 experiments carried out on a laboratory-scale 
overhead crane (Fig. 1) for different operating points, rope lengths l = {0.8, 1.1, 1.4, 1.7, 2.0} m and 
payload masses m = {10, 30, 50} kg. The input signal u was a sequence of step functions with varying 
amplitude in order to excite the underactuated part of the overhead crane. The data from experiment 
with l = 1.1 m and m = 50 kg, and experiment with l = 1.7 m and m = 10 kg were used as the testing 
data, while the rest was used as the training data to evolve the G3P-NARX and LPV-ARX models. 
In every generation of G3P evolution the training data is resampled with 60% used by the fast monotone 
accelerated proximal gradient descent algorithm to obtain the model coefficients while the remaining 
40% is used to select the appropriate hyperparameter 𝜆𝜆. The fitness of the individual is the root mean 
square error (RMSE) of the model predictive output (MPO) on the entire training data set: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑦𝑦𝑖𝑖−�̂�𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ 𝑦𝑦𝑖𝑖
2𝑁𝑁

𝑖𝑖=1
 (17) 

where: 𝑦𝑦 and �̂�𝑦 are observed and predicted values, respectively. 
 

 (17)

where: y and 

Figure 2. Illustration of subtree crossover 
Figure 3. Illustration of mutation operators: a) point mutation, b) subtree mutation 
Linear parameter varying models 
Linear parameter varying input-output models are capable of modeling nonlinear systems by having the 
model parameters being a function of a measurable time-varying signal called the scheduling variable, 
while there exists only a linear relationship between the lagged inputs and outputs. Therefore, an LPV-
ARX model, with the rope length l and payload mass m as the scheduling variables, was chosen to 
perform a comparative study with the G3P models. A single input single output (SISO) discrete-time 
linear parameter varying system can be written as 
 𝑦𝑦𝑘𝑘 + ∑ 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘)𝑦𝑦𝑘𝑘−𝑖𝑖 = ∑ 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘)𝑢𝑢𝑘𝑘−𝑗𝑗

𝑛𝑛𝑏𝑏
𝑗𝑗=1 + 𝑒𝑒𝑘𝑘

𝑛𝑛𝑎𝑎
𝑖𝑖=1  (12) 

where: 𝑝𝑝 is the scheduling variable and it is assumed that the functions 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) and 𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) can be linearly 
parameterized as follows 
 𝑎𝑎𝑖𝑖(𝑝𝑝𝑘𝑘) = 𝑎𝑎𝑖𝑖,0 + ∑ 𝑎𝑎𝑖𝑖,𝑞𝑞𝜓𝜓𝑞𝑞

𝑛𝑛𝑞𝑞
𝑞𝑞=1  (13) 

  𝑏𝑏𝑗𝑗(𝑝𝑝𝑘𝑘) = 𝑏𝑏𝑗𝑗,0 + ∑ 𝑏𝑏𝑗𝑗,𝑞𝑞𝜓𝜓𝑞𝑞
𝑛𝑛𝑞𝑞
𝑞𝑞=1  (14) 

where: 𝜓𝜓 is a set of basis functions, which in the comparative study will be a set of monomials of the 
scheduling variables 𝑙𝑙 and 𝑚𝑚, and 𝑎𝑎𝑖𝑖,0, … , 𝑎𝑎𝑖𝑖,𝑞𝑞 and 𝑏𝑏𝑗𝑗,0, … , 𝑏𝑏𝑗𝑗,𝑞𝑞 are unknown parameters. Under those 
assumptions, the model (12) can be rewritten as 
 𝑦𝑦𝑘𝑘 = 𝜙𝜙𝑇𝑇𝜃𝜃 + 𝑒𝑒𝑘𝑘 (15) 
where: 

𝜙𝜙 = [ −𝑦𝑦𝑘𝑘−1, −𝑦𝑦𝑘𝑘−1𝜓𝜓, … ,
−𝑦𝑦𝑘𝑘−𝑛𝑛𝑎𝑎𝜓𝜓, 𝑢𝑢𝑘𝑘−1, 𝑢𝑢𝑘𝑘−1𝜓𝜓, … , 𝑢𝑢𝑘𝑘−𝑛𝑛𝑏𝑏𝜓𝜓]

𝑇𝑇
, 

𝜓𝜓 = [𝜓𝜓1, … , 𝜓𝜓𝑛𝑛𝑞𝑞], 

𝜃𝜃 = [𝑎𝑎1,0, 𝑎𝑎1,1, … , 𝑎𝑎𝑛𝑛𝑎𝑎,𝑛𝑛𝑞𝑞, 𝑏𝑏0,0, 𝑏𝑏0,1, … , 𝑏𝑏𝑛𝑛𝑏𝑏,𝑛𝑛𝑞𝑞]
𝑇𝑇
. 

Including all possible model terms can lead to overparameterization and result in a more complex with 
reduced accuracy due to overfitting. Thus, the SPARSEVA method [26] is used to find an LPV-ARX 
model [27] with a reduced number of model terms by solving the following minimization problem 
 𝑚𝑚𝑚𝑚𝑚𝑚

𝜃𝜃
 ‖𝜃𝜃‖1 (16) 

 𝑠𝑠. 𝑡𝑡.: 𝑉𝑉𝑁𝑁 (𝜃𝜃) ≤ 𝑉𝑉𝑁𝑁(𝜃𝜃𝑁𝑁
𝐿𝐿𝐿𝐿)(1 + 𝜀𝜀𝑁𝑁)  

where: 𝑉𝑉𝑁𝑁(𝜃𝜃) = 1
𝑁𝑁 ‖𝛷𝛷𝜃𝜃 − 𝑦𝑦‖2

2, 𝜃𝜃𝑁𝑁
𝐿𝐿𝐿𝐿 is the unpenalized least squares solution of 𝑉𝑉𝑁𝑁, and 𝜀𝜀𝑁𝑁 > 0 is a 

predefined quantity. 
Following [26], the value of 𝜀𝜀𝑁𝑁 = 2𝑛𝑛

𝑁𝑁 , which corresponds to Akaike’s information criterion, is used. 
Additionally, since the 𝑙𝑙1 penalty biases the solution, (16) is used to find the support of 𝜃𝜃 and the non-
zero values are re-estimated using least-squares, called SPARSEVA-RE. The solution of (16) was 
solved using the SPGL1 algorithm [28]. 
EXPERIMENTAL RESULTS 
The experimental data was obtained in series of 10 experiments carried out on a laboratory-scale 
overhead crane (Fig. 1) for different operating points, rope lengths l = {0.8, 1.1, 1.4, 1.7, 2.0} m and 
payload masses m = {10, 30, 50} kg. The input signal u was a sequence of step functions with varying 
amplitude in order to excite the underactuated part of the overhead crane. The data from experiment 
with l = 1.1 m and m = 50 kg, and experiment with l = 1.7 m and m = 10 kg were used as the testing 
data, while the rest was used as the training data to evolve the G3P-NARX and LPV-ARX models. 
In every generation of G3P evolution the training data is resampled with 60% used by the fast monotone 
accelerated proximal gradient descent algorithm to obtain the model coefficients while the remaining 
40% is used to select the appropriate hyperparameter 𝜆𝜆. The fitness of the individual is the root mean 
square error (RMSE) of the model predictive output (MPO) on the entire training data set: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑦𝑦𝑖𝑖−�̂�𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ 𝑦𝑦𝑖𝑖
2𝑁𝑁

𝑖𝑖=1
 (17) 

where: 𝑦𝑦 and �̂�𝑦 are observed and predicted values, respectively. 
 

 are observed and predicted val-
ues, respectively.

The LPV model was run with the same 
number of input and output lags available to 
the G3P algorithm and the basis functions 
were chosen to be ψ = [m, l, ml, m2, l2, m2 l, 
ml2] which results in a maximum number of 80 
parameters in the model. The G3P algorithm 
with hyperparameters given in Table 2 was run 
20 times for each grammar (Table 1) to ob-
tain both the velocity and sway NARX poly-
nomial and extended models.The models are 
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compared in terms of accuracy and complex-
ity, with the accuracy evaluated in a one step 
ahead (OSA) prediction and for MPO using the 
RMSE, and the complexity being measured by 
the number of model terms and the total num-
ber of nodes. Additionally, the G3P-NARX 
velocity and sway models with the highest ac-
curacy are combined and the MPO is evaluated 
1000 times to obtain the median and median 
absolute deviation (MAD) value of the execu-
tion time. The medians and minimum values 
for the accuracy and complexity measures of 
the runs are given in Table 3 and Table 4 for 
the velocity and sway models respectively, 
while the execution time is given in Table 5. 
In order to determine if there exists a differ-
ence between the medians of the multiple runs 
using the polynomial and extended grammar 

the Wilcoxon rank sum test is conducted and 
the results given in Table 6. The boxplots of 
the G3P models OSA, MPO, and complexity 
for the velocity and sway models are shown in 
Figures 4–6, where G3P-E and G3P-P denote 
respectively extended and polynomial NARX 
models identified using the G3P algorithm.

The LPV-ARX velocity model had a MPO 
RMSE approximately 2.5 and 1.8 higher than the 
median G3P-NARX model on with polynomial 
grammar on the training and testing sets respectively, 
and approximately 2.9 and 2 times higher than the 
median G3P-NARX model with the extended gram-
mar on the training and testing sets respectively. For 
the sway model LPV-ARX had a RMSE MPO of 
approximately 1.3 times higher than the median 
G3P-NARX model with polynomial grammar on 
both the training and validation sets while being 

Table 2. G3P hyperparameters
Number of generations 250

Maximum number of prox iterations 3500

Initialization Probability tree creation 2 [29]

Maximum number of model terms 35

Population size 100

Maximum tree size 13

Maximum tree depth 8

Ephemeral random constant [-1.1]

Tournament size 4

Table 3. Models performances for crane velocity prediction

Specification
OSA (RMSE) MPO (RMSE) Complexity

Training Testing Training Testing No. model 
terms

No. tree 
nodes

G3P 
(polynomial)

Median 0.5677 0.6163 1.0049 1.3985 27 159.5

Minimum 0.5397 0.5625 0.9417 1.3378 20 112

G3P 
(extended)

Median 0.5176 0.5650 0.8788 1.2774 27 166.5

Minimum 0.4881 0.5247 0.8451 1.1815 22 131

LPV-ARX 0.7041 0.6606 2.5708 2.5571 80 –

Table 4. Models performances for payload sway prediction

Specification
OSA (RMSE) MPO (RMSE) Complexity

Training Testing Training Testing No. model 
terms

No. tree 
nodes

G3P 
(polynomial)

Median 0.0047 0.0033 0.0290 0.0314 18 95

Minimum 0.0034 0.0026 0.0148 0.0177 10 44

G3P 
(extended)

Median 0.0039 0.0028 0.0145 0.0251 23 125.5

Minimum 0.0037 0.0022 0.0122 0.0134 17 65

LPV-ARX 0.0036 0.0028 0.0367 0.0419 80 –
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Table 5. Execution time of the combined models
Specification Median [s] MAD [s]

G3P (polynomial) 1.4294×10-3 2.9849×10-4

G3P (extended) 4.8121×10-3 7.0053×10-4

LPV-ARX 9.6065×10-4 4.0878×10-4

Figure 4. Performances of crane velocity models: a) OSA, b) MPO

approximately 2.5 and 1.7 times higher than the me-
dian G3P-NARX models with the extended gram-
mar on the training and testing sets respectively. 

The G3P velocity prediction model runs with 
the extended grammar had a median OSA RMSE of 
0.5176 and 0.5650 on the training and testing set re-
spectively and a median MPO RMSE of 0.8788 and 
1.2774 on the training and testing set respectively. 
The runs with polynomial grammar had a median 

OSA RMSE of 0.5677 and 0.6163 on the training 
and testing set respectively and a median MPO 
RMSE of 1.0049 and 1.3985 on the training and 
testing set respectively. The median complexity of 
the models with the extended grammar was 27 and 
166.5 when measured by the number of model terms 
and the number of tree nodes respectively while for 
the polynomial grammar were 27 and 159.5 when 
measured by the number of model terms and number 
of tree nodes respectively. There was a statistically 
significant difference in the medians of the OSA and 
MPO RMSE between the velocity models with the 
extended grammar and the polynomial grammar, 
however there was no statistical significance between 
the complexity both in terms of the number of model 
terms and the number of tree nodes. The G3P sway 

a)

b)
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model runs with the extended grammar had a median 
OSA RMSE of 0.0039 and 0.0028 on the training 
and testing set respectively as while the OSA RMSE 
for the polynomial grammar was 0.0047 and 0.0033 
on the training and testing set respectively. The 

median of the sway model runs MPO RMSE was 
0.0145 and 0.0251 on the training and testing set re-
spectively for the extended grammar and 0.0290 and 
0.0314 on the training and testing set respectively for 
the polynomial grammar. The median complexity 

Figure 5. Performances of payload sway models: a) OSA, b) MPO

Table 6. Wilcoxon rank sum test p-values
Specification Velocity Sway

OSA
Training 7.9479×10-7 0.2184

Testing 3.7499×10-4 0.2503

MPO
Training 6.7956×10-8 0.0060
Testing 1.6571×10-7 0.0764

No. of model terms 0.9024 0.0028
No. of nodes 0.7149 0.0074

a)

b)
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Figure 6. Complexity of G3P models: a) velocity model, b) sway model

for the sway model with the extended grammar 
was 23 and 125.5 when measured by the num-
ber of model terms and number of tree nodes 
respectively while for the polynomial grammar 
it was 18 and 95 respectively. The G3P sway 
model runs with the extended grammar did not 
result in statistically significant lower OSA and 
MPO RMSE on the testing set compared to the 
runs with the polynomial grammar, however it 
resulted in statistically significant lower MPO 
RMSE on the training set. The median differ-
ence in the complexity measures for the sway 
model were statistically significant meaning 
that the G3P with polynomial grammar resulted 
in less complex models.Although the Wilcoxon 

rank sum tests the null hypothesis that the medi-
ans are equal, when taking the best model out of 
all the runs, the G3P with the extended grammar 
had higher accuracy than the G3P with the poly-
nomial grammar. The MPO of the G3P-NARX 
models with the lowest RMSE are compared 
with the LPV-ARX in Figure 7 and Figure 8 for 
the velocity and sway respectively. The LPV-
ARX models, even though having the highest 
complexity measure in terms of the number 
of parameters, had the lowest execution time. 
The G3P-NARX models with the extended and 
polynomial grammar took approximately 5 and 
1.5 times longer respectively to compute than 
the LPV-ARX model.

a)

b)
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Figure 7. MPO of crane velocity model at an operating point: a) l = 1.7 m, m = 10 kg, b) l = 1.1 m, m = 50 kg

Figure 8. MPO of sway model at an operating point: a) l = 1.7 m, m = 10 kg, b) l = 1.1 m, m = 50 kg

CONCLUSIONS

In this paper input-output data was collected 
from a laboratory-scale overhead crane which was 
used to identify the system dynamics by decom-
posing the crane dynamics into an actuated and 
unactuated part. G3P used the input-output data 
to evolve NARX models thereby automating the 
model selection procedure, while a local search 
with a deterministic  regularized least squares was 
used to obtain the model term coefficients and 
promote sparsity thereby reducing overfitting and 
resulting in less complex models. Due to the non-
convex and non-smooth penalty, the fast monotone 
proximal gradient descent was used to find a sub-
optimal solution to the regularized least squares 
problem. The G3P algorithm performance was 
tested for two different sets of grammar and the 

models were compared with an LPV-ARX model 
in terms of accuracy and complexity.

The G3P algorithm with both the polyno-
mial grammar and the extended grammar ob-
tained NARX models with a minimum MPO 
RMSE on the testing set of 1.3378 and 1.1815 
respectively for the velocity model and a mini-
mum MPO RMSE on the testing set of 0.0177 
and 0.0134 respectively for the sway model, 
while the LPV-ARX NARX model with mo-
nomial basis functions had an MPO RMSE of 
2.5571 and 0.0419 on the testing set for the ve-
locity and sway models respectively. The LPV-
ARX had a median execution time for evaluat-
ing the MPO of 9.6065×10-4, as opposed to the 
median execution time for evaluating the MPO of  
1.4294×10-3 and 4.8121×10-3 for the G3P mod-
els with polynomial and extended grammars re-
spectively. The G3P algorithm with the extended 

a)

a)

b)

b)



294

Advances in Science and Technology Research Journal 2024, 18(4), 282–295

grammar obtained more accurate velocity models 
than with the polynomial grammar while being 
equally complex, however, although the G3P al-
gorithm with the extended grammar obtained the 
models with the smallest MPO RMSE, there was 
no statistical significance between the median 
MPO RMSE for the sway model when compared 
to the models obtained with the polynomial gram-
mar while the polynomial models tended to be 
less complex in all measured metrics including 
the execution time. The aforementioned advan-
tages of the model obtained with the polynomial 
grammar make it better suited for practical imple-
mentation of the model, as well as real time ap-
plications such as model predictive control where 
optimization is limited due to expensive function 
evaluations in a limited time frame.
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