PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The Combined Effect of Mycorrhization and Olive Mill Wastewater on Biomass Productivity and Physiological Performance in Young Olive Plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study aims to determine the optimal dose of olive mill wastewater (OMW) for maximum mycorrhization and to assess the biomass, physiological, and biochemical tolerance of mycorrhizal olive plants to stress induced by this wastewater. The study involved injecting Rhizophagus irregularis into young olive trees (Olea europaea L.) under greenhouse conditions. At rates of 100, 150, and 200 m3/ha, OMW is applied to the soil surrounding each olive tree. For comparison, a non-inoculated group was added as a control. Dry matter, mycorrhization rate, leaf relative water content (RWC), foliar nutrients (N, P, and K), and a number of physiological and biochemical parameters were among the variables that were assessed. When arbuscular mycorrhizal fungi and olive mill wastewater were combined at a rate of 100 m3/ha, the results showed significant increases in dry matter (22.5%), Leaf relative water content (16.32%), potassium levels (38.46%), stomatal conductance (30.4%), and photosynthesis compared to the control. However, high olive mill wastewater doses (150 and 200 m3/ha) caused water stress: Compared to nonmycorrhizal plants (NM), the decrease in mycorrhizal plants (M) was less pronounced. Leaf relative water content dropped by 14.9% and 21.27% in mycorrhizal plants and by 22.22% and 28.88% in non-mycorrhizal plants. Under these high doses of Olive mill wastewater, the mycorrhization rate dropped significantly by as much as 30% and 45% respectively. All OMW treatments increased proline and sugar content as stress responses. Consequently, our study reveals that the optimal application of 100 m3/ha of OMW, combined with Rhizophagus irregularis, enhances the growth and performance physiology of young olive plants while increasing mycorrhization rates, stomatal conductance, and photosynthetic efficiency. This synergy between OMW and AMF also promotes better plant resilience to water stress by activating biochemical mechanisms such as increased proline and sugar levels. Additionally, AMF mitigates the negative effects of high OMW doses, highlighting its crucial role in managing the risks associated with wastewater application.
Twórcy
  • Department of Biology, Biochemistry and natural resources research team, Moulay Ismail University, Faculty of Science and Technology, BP 509, Boutalamine, Errachidia, Morocco
  • Department of Biology, Biotechnology and Plant Physiology Unit, Cadi Ayyad University, Faculty of Science Semlalia, BP 2390, Marrakesh, Morocco
  • Department of Biology, Biotechnology and Plant Physiology Unit, Cadi Ayyad University, Faculty of Science Semlalia, BP 2390, Marrakesh, Morocco
  • Laboratory of Environment and Health, Department of Biology, Moulay Ismail University, Faculty of Sciences & Techniques, Errachidia, Morocco
  • Department of Biology, Biotechnology and Plant Physiology Unit, Cadi Ayyad University, Faculty of Science Semlalia, BP 2390, Marrakesh, Morocco
  • Department of Biology, Biotechnology and Plant Physiology Unit, Cadi Ayyad University, Faculty of Science Semlalia, BP 2390, Marrakesh, Morocco
Bibliografia
  • 1. Abichou M., Gargouri K., Rhouma A., Khatteli H. 2014. Long term effect of olive mill waste water spreading on microbial population and the natural floristic composition of a sandy soil. Agricultural Science, Engineering and Technology Research. 1, 2, 16–25.
  • 2. Afnor, Recueil de normes françaises : eau, méthodes d’essai, 2e édition, Paris, 1983.
  • 3. Aganchich B., Wahbi S., Yaakoubi A., El-Aououad H., Bota, J. 2022. Effect of arbuscular mycorrhizal fungi inoculation on growth and physiology performance of olive tree under regulated deficit irrigation and partial rootzone drying. South African Journal of Botany 148, 1–10.
  • 4. Ahmali A., Mandi L., Loutfi K., El Ghadraoui A., El Mansour T.E., El Kerroumi A., Hejjaj A., Del Bubba M., Ouazzani N. 2020. Agro-physiological responses of Koroneiki olive trees (Olea europaea L.) irrigated by crude and treated mixture of olive mill and urban wastewaters. Scientia Horticulturae, 263, 109101.
  • 5. Anli M., Fakhech A., Boutasknit A. et al. 2022. Comparing the Response of Growth and Physiologic Variables of Onion to Olive Mill Wastewater Application and Arbuscular Mycorrhizal Fungi Inoculation. Gesunde Pflanzen 75, 655–666 (2023). https://doi.org/10.1007/s10343-022-00731-1
  • 6. Barbera C., Maucieri C., Cavallaro V., Ioppolo A., Spagna V. 2013. Effects of spreading olive mill wastewater on soil properties and crops, a review. Agric. Water Manag, 119, 43–53.
  • 7. Barros V., Frosi G., Santos M., Ramos D.G., Falcao H.M., Santos M.G. 2018. Arbuscular mycorrhizal fungi improve photosynthetic energy use efficiency and decrease foliar construction cost under recurrent water deficit in woody evergreen species. Plant Physiol. Biochem, 127, 469–477. https://doi.org/10.1016/j.plaphy.2018.04.016
  • 8. Belaqziz M., El-Abbassi A., El Khadir L., Evita A., Charis M.G. 2016. Agronomic application of olive mill wastewater: Effects on maize production and soil properties. Journal of Environmental Management., 172, 158–165. DOI: 10.1016/j.jenvman.2016.02.006.
  • 9. Ben-Laouane R., Baslam M., Ait-El-Mokhtar M., Anli M., Boutasknit A., Toubali S., Mitsui T., Wahbi S., Meddich A. 2020. Potential of native arbuscular mycorrhizal fungi, rhizobia, and/or green compost as alfalfa (Medicago sativa) enhancers under salinity. Microorganisms, 8, 11, 1695. https://doi.org/10.3390/microorganisms8111695
  • 10. Ben Rouina B., Bedbabis S., Boukhris M., Ferrara G. 2014. Effect of irrigation with treated wastewater on soil chemical properties and infiltration rate. Journal of Environmental Management.. 133, 45–50.
  • 11. Boldt K., Pors Y., Haupt B., Bitterlich M., Kuhn C., Grimm B., Franken P. 2011. Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. Journal of Plant Physiology. 168, 1256– 1263. https://doi.org/10.1016/j.jplph.2011.01.026
  • 12. Boutaj H., Boutasknit A., Elhaissoufi W., Anli M., Meddich A. 2020. Olive mill wastewater spreading improves growth, physiological and biochemical traits of Phaseolus vulgaris. Desalination and Water Treatment, 185, 87–98. https://doi.org/10.5004/dwt.2020.25423
  • 13. Chaari L., Elloumi N., Mmseddi S., Gargougri K., Ben rouina B., Mechichi T., Kallel M. 2015. Changes in soil macronutrients after a long-term application of olive mill wastewater. Journal of Applied Chemistry and Environmental Nanotechnology, 4, 1–13.
  • 14. Chartzoulakis K., Psarras G., Moutsopoulou M., Stefanoudaki E. 2010. Application of olive mill wastewater to a Cretan olive orchard: effects on soil properties, plant performance and the environment. Agricultural Ecosystems and Environment. 138: 293–298.
  • 15. Chatzistathis, T., Koutsos, T., 2017. Olive mill wastewater as a source of organic matter, water and nutrients for restoration of degraded soils and for crops managed with sustainable systems. Agric. Water Manage. 190, 55–64.
  • 16. Dakhli R., Maalej E.M. 2017. Olive mill wastewater spreading in southern Tunisia: effects on abarley crop: (Hordeum Vulgare. L). Journal of Agriculture and Environment for International Development, 111, 87–103.
  • 17. Di Bene C., Pellegrino E., Debolini M. 2013. Shortand long-term effects of olive mill wastewater land spreading on soil chemical and biological properties. Soil Biology and Biochemistry, 56, 21–33.
  • 18. Djouhou F.M.C., Nwaga D., Fokou E. 2019. Comparative effect of arbuscular mycorrhizal fungi and biostimulants on the antioxidant and nutritional potential of Moringa oleifera. Nutrition and Food Science International Journal, 9, 1–6.
  • 19. https://doi.org/10.19080/NFSIJ.2019.09.555758
  • 20. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017
  • 21. Gullo G., Branca V., Cannavò S., Dattola A., Zappia R. 2010. Irrigation Effects with Different Mixtures of Olive Mill Wastewater (OMW) and Clean Water on the Growth and quality of Young Olive Plants cv. ‘Ottobratica’, in a Nursery. Terrestrial and aquatic environmental toxicology 4 (special issue 1), Global Science Books, 84-90.
  • 22. Hamimed S., Chamekh A., Slimi H., Chatti A. 2022. How olive mill wastewater could turn into valuable bionanoparticles in improving germination and soil bacteria. Industrial Crops and Products, 188, 115682.
  • 23. Isidori M., Lavogna M., Nardelli A., Parella A. 2005. Model study on the effect of 15 phenolic olive mill wastewater constituents on seed germination and Vibrio fischeri metabolism. Journal of Agricultural and Food Chemistry, 53, 8414-8417.
  • 24. Jawaher S.G., Bargougui L., Chaieb M., 2019. Study of the phytotoxic potential of olive mill wastewaters on a leguminous plant (Vicia faba L). Water Science and Technology, 80, 1295–1303.
  • 25. Khalil J., Habib H., Alabboud M., Mohammed S. 2021. Olive mill wastewater effects on durum wheat crop attributes and soil microbial activities: a pilot study in Syria. Energy Ecology and Environment, 6, 469–477. https://doi.org/10.1007/s40974-021-00209-2
  • 26. Klute A. 1986. Water Retention. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. American Society of Agronomy.
  • 27. Knudsen D., Peterson G.A., Pratt P.F. 1982. Lithium, sodium, and potassium. In: Methods of soil analysis. Part 2. Chemical and microbiological properties, 225–246.
  • 28. Lahbouki S., Anli M., El Gabardi S et al. 2021. Evaluation of arbuscular mycorrhizal fungi and vermicompost supplementation on growth, phenolic content and antioxidant activity of prickly pear cactus (Opuntia ficus-indica). Plant Biosystems. http://doi.org/10.1080/11263504.2021.1947408
  • 29. Liu C., Ravnskov S., Li, F., Rubæk G.H., Andersen M.N. 2018. Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial rootzone drying. Journal of Agricultural Science. 156, 46–58.
  • 30. https://doi.org/10.1017/S0021859618000023
  • 31. López-Escudero F.J., Blanco-López M.Á., Rincón C.D.R. and Reig J.M.C. 2007. Response of olive cultivars to stem puncture inoculation with a defoliating pathotype of Verticillium dahliae, Horticultural Science , 2, 294-298.
  • 32. Macheix J.J., Fleuriet A., Billo J.A. 1990. Fruit Phenolics.CRC Press Inc, Boca Raton, FL, 378.
  • 33. Magdich S., Ben Ahmed C., Boukhris M., Ben Rouina B., Ammar E. 2015. Olive mill wastewater spreading effects on productivity and oil quality of adult chemlali olive (Olea europaea L.) in the south of Tunisia. International Journal of Agronomy and Agricultural Research, 6, 56–67.
  • 34. Magdich S., Abid W., Boukhris M., Ben Rouina B., Ammar E. 2016. Effects of long-term olive mill wastewater spreading on the physiological and biochemical responses of adult Chemlali olive trees (Olea europaea L.). Ecological Engineering. 97, 122–129.
  • 35. Martín J., Sampedro I., García-Romera J.M., García-Garrido J.A., Ocampo J.A. 2002. Arbuscular mycorrhizal colonization and growth of soybean (Glycine max) and lettuce (Lactuca sativa) and phytotoxic effects of olive mill residues. Soil Biology and Biochemistry, 34, 1769-1775.
  • 36. Mechri B., Cheheb H., Boussadia O., Attia F., Mariem F.B., Braham M., Hammami M., 2011. Effects of agronomic application of olive mill wastewater in a field of olive trees on carbohydrate profiles, chlorophyll a fluorescence and mineral nutrient content. Environmental and Experimental Botany,71, 184–191.
  • 37. Meddich A., Oihabi A., Jaiti F., Bourzik W., Hafidi M., 2015a. Role of arbuscular mycorrhizal fungi on vascular wilt and drought tolerance in date palm (Phoenix dactylifera L.). Canadian Journal of Botany, 93, 369-377.
  • 38. Meddich A., Ait El Mokhtar M., Wahbi S., Boumezzough A. 2017. Evaluation of mycorrhizogenic potential in relation to physico-chemical soil parameters in Moroccan palm groves (Marrakech and Tafilalet), Les oasis en Afrique du Nord: Dynamiques territoriales et durabilité des systèmes de production agricole. Cahiers Agricultures, 26, 45012 (in French)
  • 39. Mekki A., Dhouib A., Feki F., Sayadi, S. 2013. Review : effects of olive mill wastewater application on soil properties and plants growth. Int. Journal of Recycling of Organic Waste in Agriculture, 2, 15.
  • 40. Mekki A., Aloui A., Guergueb Z., Braham M. 2018. Agronomic valorization of olive mill wastewaters: Effects on Medicago sativa growth and soil characteristics. Clean, Soil, Air, Water, 100, 1–9.
  • 41. Mekki A., Chaouch A., Bargougui L., Chaieb M., Amar F.B. 2019. Ecophysiologicals Responses of Olive Trees (Olea europaea L.) Hybrid Varieties in Soil Amended with Olive Mill Waste Waters. Journal of Water Science and Engineering, 5, 1–10.
  • 42. Nelson D.W., Sommers L.E. 1996. Total carbon, organic carbon, and organic matter. In: Methods of soil analysis, part 3: Chemical Methods, Soil Scien, 961–1010.
  • 43. Olsen S.R., Dean L.A. 1965. Phosphorus in: Methods of soil analysis. American Society of Agronomy, 9, 920–926.
  • 44. Ouledali S., Ennajeh M., Ferrandino A., Khemira H., Schubert A., Secchi F. 2019. Influence of arbuscular mycorrhizal fungi inoculation on the control of stomata functioning by abscisic acid (ABA) in drought-stressed olive plants. South African Journal of Botany, 121, 152–158.
  • 45. Ouzounidou G., Asfi M. 2012. Determination of olive mill wastewater toxic effects on three mint species grown in hydroponic culture. Journal of Plant Nutrition, 35, 5, 726–738.
  • 46. Panagiotopoulos L. 2001. Mineral nutrition-fertilization of olive trees. Agriculture and Cattle-Raising, 3, 36–44 (in Greek).
  • 47. Phillips J.M., Hayman D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158–161.https://doi.org/10.1016/S0007-1536(70)80110-3
  • 48. Rajib, M.A., Merwade., V. 2016. Improving soil moisture accounting and streamflow prediction 21 in SWAT by incorporating a modified time‐dependent SCS CN method. Hydrol. Process. 22 30, 603- 624. DOI: 10.1002/hyp.10639.
  • 49. Sahroui H., Jrad A., Mellouli H.J. 2012. Épandage des margines sur les sols agricoles : impacts environnementaux microbiologiques. South African Journal of Science, 8, 97 – 106.
  • 50. Tajini,F., Ouerghi A., Hosni K. 2019. Effect of irrigation with olive-mill waste-water on physiological and biochemical parameters as well as heavy-metal accumulation in common bean (Phaseolus vulgaris L.). Journal of New Sciences in Agriculture and Biotechnology, 66, 6, 4193–4203.
  • 51. Tubeileh A., Abdeen M. 2017. Effect of oneTime olive-mill waste water application on yield and water relations of olive trees. Acta Horticulturae, 1150, 303–306. https://doi.org/10.17660/ActaHortic.2017.1150.42
  • 52. Wu Q.S., Zou Y.N. 2017. Arbuscular mycorrhizal fungi and tolerance of drought stress in plants. Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer, Singapore, pp. 25–41.
  • 53. Zelalem G., Azamal H., Masresha F., Gietahun Y. 2015. Growth, Water Status, Physiological, Biochemical and Yield Response of Stay Green Sorghum (Sorghum bicolor L.) Varieties-A Field Trial Under Drought-Prone Area in Amhara Regional State, Ethiopian Journal of Agricultural Sciences, 14,188-202.
  • 54. Zhu X., Cao Q., Sun L., Yang X., Yang W., Zhang H., 2018. Stomatal Conductance and Morphology of Arbuscular Mycorrhizal Wheat Plants Response to Elevated CO2 and NaCl Stress. Frontiers in Plant Science, 9, 1363. https://doi.org/10.3389/fpls.2018.01363
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1afe270d-e3c8-476a-b08d-6b434b904451
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.