PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reducing nutrient loss in intensive agriculture : preliminary pot research

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The maintenance of appropriate soil structure is critical for preventing soil degradation and mitigating nutrient losses that cause eutrophication of water bodies. An important challenge to combat eutrophication in the Baltic Sea is reducing phosphorus losses from agricultural land. Gypsum (CaSO 4∙2H 2 O) has been identified as a promising soil amendment that improves soil structure and reduces phosphorus leaching. However, it has not been widely used in Poland. The article explains the importance of gypsum during the formation of a lumpy soil structure and in reducing phosphorus losses. A total of 18 samples were prepared, including three replicate samples without and with gypsum. Gypsum was added to each of the three pots based on the bulk density of the soil to correspond 4 Mg of gypsum per ha. The soil samples were analysed for total phosphorus, phosphates, available phosphorus, pH in water, KCl, and organic carbon. The study presents findings of a laboratory pot test conducted on three soil samples from Southern Poland. The pot experiment indicated a decrease in turbidity of leachates from the soil samples treated with gypsum. Gypsum application did not significantly affect soil pH and total phosphorus content. Analysis of the soil samples before and after the watering showed that the total phosphorus concentration did not change. This was due to the low share of phosphorus released relative to the total phosphorus content in the soil.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
200--207
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • Institute of Technology and Life Science – National Research Institute, Falenty, 3 Hrabska Ave., 05-090 Raszyn, Poland
  • Institute of Technology and Life Science – National Research Institute, Falenty, 3 Hrabska Ave., 05-090 Raszyn, Poland
  • Institute of Technology and Life Science – National Research Institute, Falenty, 3 Hrabska Ave., 05-090 Raszyn, Poland
autor
  • Finnish Environment Institute (Syke), Latokartanonkaari 11, 00790 Helsinki, Finland
Bibliografia
  • Abdolvand, Y. and Sadeghiamirshahidi, M. (2024) “Soil stabilization with gypsum: A review,” Journal of Rock Mechanics and Geotechnical Engineering. Available at: https://www.sciencedirect.com/science/article/pii/S1674775524001367 (Accessed: October 14, 2024).
  • AroSulCa (2019) Na żyzność gleby AgroSulCa nawóz siarkowo-wapniowy. Stosowanie nawozu [On soil fertility AgroSulCa sulphur-lime fertiliser. Application of fertiliser]. Available at: https://agrosulca.com.pl/wp-content/uploads/2019/01/Stosowanie-nawozu-1.pdf (Accessed: October14, 2024).
  • Balsamo, G. et al. (2009) “A revised hydrology for the ECMWF Model: Verification from field site to terrestrial. Water storage and impact in the integrated forecast system,” American Meteorological Society, 10, pp. 623–643. Available at: https://doi.org/10.1175/2008JHM1068.1 (Accessed: October 14, 2024).
  • Bossolani, J.W. et al. (2020). “Long-term lime and gypsum amendment increase nitrogen fixation and decrease nitrification and denitrification gene abundances in the rhizosphere and soil in a tropical no-till intercropping system,” Geoderma, 375, 114476. Available at: https://doi.org/10.1016/j.geoderma.2020.114476.
  • Buszewski, B. and Pomastowski, P. (2015). “Wpływ heterogeniczności powierzchni biokoloidów na ich rozdzielanie elektroforetyczne [Influence of heterogeneity biocolloids surface on their electrophoretic separation],” Wiadomości Chemiczne, 69, pp. 9–10. Available at: https://bibliotekanauki.pl/articles/172496 (Accessed: October 14, 2024).
  • Casagrande, A. (1948) “Classification and identification of soils,” Transactions of the American Society of Civil Engineers, 113, pp. 901–991.
  • Chen, L. and Dick, W.A. (2011) “Gypsum as an agricultural amendment: General use guidelines,” Bulletin, 945. Columbus, OH: The Ohio State University Extension. TDD No. 800-589-8292 (Ohio only) or 614-292-1868. Available at: https://fabe.osu.edu/sites/fabe/files/imce/files/Soybean/Gypsum%20Bulletin.pdf (Accessed: October 14, 2024).
  • Dobrzański, B. and Zawadzki, S. (eds.) (1981) Gleboznawstwo. Podręcznik dla studentów akademii rolniczych [Soil science textbook for students of agricultural academies]. Warszawa: PWRiL.
  • Ekholm, P. et al. (2012) “Gypsum amendment of soils reduces phosphorous losses in an agricultural catchment,” Agricultural and Food Science, 21, pp. 279–291. Available at: https://doi.org/10.23986/afsci.6831.
  • Ekholm, P. et al. (2024) “Gypsum amendment of agricultural fields to decrease phosphorus losses – Evidence on a catchment scale,” Journal of Environmental Management, 357, 120706. Available at: https://doi.org/10.1016/j.jenvman.2024.120706.
  • FAO (2003) “Chapter 1. Introduction,” in Fertilizer use by crop in Poland. Rome: Food and Agriculture Organization of the United Nations. Available at: https://www.fao.org/4/Y4620E/y4620e05. htm (Accessed: October 14, 2024).
  • Fertilizers Europe (2023) Balanced plant nutrition. Available at: https://www.fertilizerseurope.com/fertilizers-in-europe/balanced-plant-nutrition/ (Accessed: October 16, 2024).
  • Hartono, A., Indriyati, T.L. and Selvi (2013) “Effects of humic substances on phosphorus sorption and desorption characteristics of soils high in iron and aluminum oxides,” Journal of the International Society for Southeast Asian Agricultural Sciences, 19(1), pp. 87–94. Available at: https://www.researchgate.net/publication/288392892_Effects_of_humic_substances_on_phosphorus_sorption_and_desorption_characteristics_of_soils_high_in_iron_and_aluminum_oxides Accessed: October 14, 2024).
  • HELCOM (no date) PLC-7. Seventh Baltic Sea pollution load compilation (2017–2019). Helsinki: Helsinki Commission. Available at: https://helcom.fi/helcom-at-work/projects/summary-of-the-helcom-seventh-pollution-load-compilation-plc-7/ (Accessed: October 14, 2024).
  • Jadczyszyn, J. and Smreczak, B. (2017) “Mapa glebowo-rolnicza w skali 1:25 000 i jej wykorzystanie na potrzeby współczesnego rolnictwa [Soil and agricultural map on a scale of 1:25,000 and its use for the needs of modern agriculture],” Studia i Raporty IUNG-PIB, 51(5), pp. 9–27. Available at: https://iung.pl/sir/zeszyt51_1.pdf (Accessed: October 14, 2024).
  • Kobus, A. (2017) “Bez uregulowanego pH trudno o wysoki plon [Without a regulated pH it is difficult to achieve a high yield],” Farmer, 9. Available at: https://www.farmer.pl/produkcja-roslin-na/nawozy/bez-uregulowanego-ph-trudno-o-wysoki-plon,73740. html (Accessed: October 16, 2024).
  • Konewka, B. (2014) “Kwasy humusowe a dostępność fosforu w glebie [Humic acids and phosphorus availability in soil],” Agrosimex. Available at: https://agrosimex.pl/blog/kwasy-humusowe-a-dostepnosc-fosforu-w-glebie?srsltid=AfmBOoqrTSstx6nEfUtg-c8eywnbAgrQdau5Dp66BRnmjb7nzAgSpU379 (Accessed: October 14, 2024).
  • Kotwica, Ł. (2005) “Wpływ podwójnej warstwy elektrycznej na dyfuzję jonów w zaczynie cementowym [Influence of electrical double layer on ion diffusion trough cement paste],” Zeszyty Naukowe Politechniki Śląskiej, Ser. Budownictwo, 104, 1695. Available at: http://delibra.bg.polsl.pl/Content/41180/BCPS_45059_2005_Wplyw-podwojnej-wars.pdf (Accessed: October 14, 2024).
  • Kosenius, A.-K. and Ollikainen, M. (2019) “Drivers of participation in gypsum treatment of fields as an innovation for water protec-tion,” Ecological Economics, 157, pp. 382–393.
  • Kuś, J. (2015) “Glebowa materia organiczna – znaczenie, zawartość i bilansowanie [Soil organic matter – importance, content and balancing],” Studia i Raporty IUNG, 45(19), pp. 27–53. Available at: https://doi.org/10.26114/sir.iung.2015.45.02.
  • Marks, L. (2005) “Pleistocene glacial limits in the territory of Poland,” Przegląd Geologiczny, 53(10/2), pp. 988–993. Available at: https://www.pgi.gov.pl/images/stories/przeglad/pdf/pg_2005_10_2_25.pdf (Accessed: October 14, 2024).
  • Nelson, J.T. et al. (2024) “A simple, affordable, do-it-yourself method for measuring soil maximum water holding capacity,” Communications in Soil Science and Plant Analysis, 55(8). Available at: https://doi.org/10.1080/00103624.2023.2296988.
  • Ollikainen, M. et al. (2020) “Gypsum amendment of arable fields as a water protection measure – farmers’ experience, phosphorus reduction potential and associated costs drawn from a large scale pilot,” Agricultural and Food Science, 29, pp. 383–394. Available at: https://doi.org/10.23986/afsci.88902.
  • Ollikainen, M. et al. (2024) “Gypsum and structure lime amendments in boreal agricultural clay soils: Do climate emissions compromise water quality benefits?,” Agricultural and Food Science, 33(2), pp. 90–115. Available at: https://doi.org/10.23986/afsci.143577.
  • PGW Wody Polskie (2020) Odwieczny problem Bałtyku sinice biogeny i eutrofizacja wód [The eternal problem of the Baltic Sea: cyanobacteria, nutrients and water eutrophication]. Warszawa: Państwowe Gospodarstwo Wodne – Wody Polskie. Available at: https://chronmorze.eu/odwieczny-problem-baltyku-sinice-biogeny-i-eutrofizacja-wod/ (Accessed: October 16, 2024).
  • Piszcz, U. (2013) Ocena przydatności testów chemicznych do opisu stanu fosforowego gleb uprawnych [Assessment of the usefulness of chemical tests for describing the phosphorus status of arable soils]. Monografie, 166. Wrocław: Uniwersytet Przyrodniczy we Wrocławiu. Available at: https://www.dbc.wroc.pl/Content/30051/284_PiszczU_Ocena_przydatnosci_testow.pdf (Accessed: October 14, 2024).
  • PN-88-B-04481. Grunty budowlane. Badania próbek gruntu [Construction soils. Soil sample testing]. Available at: https://docer.pl/doc/e1ns50v (Accessed: October 14, 2024).
  • Shruthi et al. (2024) “The benefits of gypsum for sustainable management and utilization of acid soils,” Plant and Soil. Available at: https://doi.org/10.1007/s11104-024-06907-0.
  • Smreczak, B., Ochal, P. and Siebielec, G. (2020) “Wpływ zakwaszenia na funkcje gleb oraz wyznaczanie obszarów ryzyka na użytkach rolnych w Polsce [The impact of acidification on soil functions and designation of risk areas on agricultural land in Poland],” Studia i Raporty IUNG-PIB, 64(18), pp. 31–47. Available at: https://iung.pl/sir/zeszyt64_2.pdf (Accessed: October 14, 2024).
  • Tan, K.H. (1998) Principle of soil chemistry. 3rd edn. New York: Marcel Dekker, Inc. New York.
  • Wójcik, P. (ed.) (2014) Zrównoważone nawożenie roślin ogrodniczych [Balanced fertilization of garden plants]. Skierniewice: Instytut Ogrodnictwa. Available at: https://dpr.iung.pl/wp-content/uploads/Nawozenie_roslin_ogrodniczych.pdf (Accessed: October 14, 2024).
  • Yli-Halla, M., Taskinen, A. and Ekholm, P. (2023) “Gypsum amendment influences soil and plant chemical composition temporarily,” Agricultural and Food Science, 32(4), pp. 195–206. Available at: https://doi.org/10.23986/afsci.131550.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1afa6df6-e192-49cc-955c-bc0840e5baee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.