PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Network of seismo-geochemical monitoring observatories for earthquake prediction research in India

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Present paper deals with a brief review of the research carried out to develop multi-parametric gas-geochemical monitoring facilities dedicated to earthquake prediction research in India by installing a network of seismo-geochemical monitoring observatories at different regions of the country. In an attempt to detect earthquake precursors, the concentrations of helium, argon, nitrogen, methane, radon-222 (222Rn), polonium-218 (218Po), and polonium-214 (214Po) emanating from hydrothermal systems are monitored continuously and round the clock at these observatories. In this paper, we make a cross correlation study of a number of geochemical anomalies recorded at these observatories. With the data received from each of the above observatories we attempt to make a time series analysis to relate magnitude and epicentral distance locations through statistical methods, empirical formulations that relate the area of influence to earthquake scale. Application of the linear and nonlinear statistical techniques in the recorded geochemical data sets reveal a clear signature of long-range correlation in the data sets.
Czasopismo
Rocznik
Strony
1000--1025
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
  • Saha Institute of Nuclear Physics, Kolkata, India
autor
  • Saha Institute of Nuclear Physics, Kolkata, India
autor
  • Saha Institute of Nuclear Physics, Kolkata, India
autor
  • Saha Institute of Nuclear Physics, Kolkata, India
autor
  • Saha Institute of Nuclear Physics, Kolkata, India
autor
  • Saha Institute of Nuclear Physics, Kolkata, India
Bibliografia
  • Carreras, B.A., B. van Milligen, M.A. Pedrosa, R. Balbín, C. Hidalgo, D.E. Newman, E. Sánchez, M. Frances, I. García-Cortés, J. Bleuel, M. Endler, S. Davies, and G.F. Matthews (1998), Long-range time correlations in plasma edge turbulence, Phys. Rev. Lett. 80, 20, 4438-4441, DOI: 10.1103/PhysRevLett.80.4438.
  • Chaudhuri, H., N.K. Das, R.K. Bhandari, D. Ghose, P. Sen, and B. Sinha (2008), Radon and helium fluctuations prior to seismic events in thermal spring gas. In: B. Singh (ed.), Electromagnetic Phenomenon Related to Earthquakes and Volcanoes, Narosa Publ. House, New Delhi, 147-155.
  • Chaudhuri, H., D. Ghose, R.K. Bhandari, P. Sen, and B. Sinha (2010), The enigma of helium, Acta Geod. Geophys. Hu. 45, 4, 452-470, DOI: 10.1556/AGeod.45.2010.4.5.
  • Chaudhuri, H., W. Bari, N. Iqbal, R.K. Bhandari, D. Ghose, P. Sen, and B. Sinha (2011), Long range gas-geochemical anomalies of a remote earthquake recorded simultaneously at distant monitoring stations in India, Geochem. J. 45, 2, 137-156; available online at http://www.terrapub.co.jp/journals/GJ/pdf/4502/45020137.pdf.
  • Chaudhuri, H., D. Ghose, R.K. Bhandari, P. Sen, and B. Sinha (2012), A geochemical approach to earthquake reconnaissance at the Baratang mud volcano, Andaman and Nicobar Islands, J. Asian Earth Sci. 46, 52-60, DOI: 10.1016/j.jseaes.2011.10.007.
  • Choubey, V.M., N. Kumar, and B.R. Arora (2009), Precursory signatures in the radon and geohydrological borehole data for M4.9 Kharsali earthquake of Garhwal Himalaya, Sci. Total Environ. 407, 22, 5877-5883, DOI: 10.1016/j.scitotenv.2009.08.010.
  • Christensen, K., Z. Olami, and P. Bak (1992), Deterministic 1/f noise in nonconserative models of self-organized criticality, Phys. Rev. Lett. 68, 16, 2417-2420, DOI: 10.1103/PhysRevLett.68.2417.
  • Cicerone, R.D., J.E. Ebel, and J. Britton (2009), A systematic compilation of earthquake precursors, Tectonophysics 476, 3-4, 371-396, DOI: 10.1016/j.tecto.2009.06.008.
  • Das, N.K., R.K. Bhandari, D. Ghose, P. Sen, and B. Sinha (2005), Anomalous fluctuation of radon, gamma dose and helium emanating from a thermal spring prior to an earthquake, Curr. Sci. 89, 8, 1399-1404.
  • Das, N.K., H. Chaudhuri, R.K. Bhandari, D. Ghose, P. Sen, and B. Sinha (2006a), Nonlinear analysis of radon time series related to earthquake. In: P. Bhattacharyya and B.K. Chakrabarti (eds.), Modelling Critical and Catastrophic Phenomena in Geoscience, Lecture Notes in Physics, Vol. 705, Springer-
  • Verlag, Berlin Heidelberg, 481-490, DOI: 10.1007/3-540-35375-5_17. Das, N.K., H. Chaudhuri, R.K. Bhandari, D. Ghose, P. Sen, and B. Sinha (2006b), Continuous monitoring of 222Rn and its progeny at a remote station for seismic hazard surveillance, Radiat. Meas. 41, 5, 634-637, DOI: 10.1016/j.radmeas.2006.03.003.
  • Das, N.K., R.K. Bhandari, D. Ghose, P. Sen, and B. Sinha (2009), Significant anomalies of helium, radon and gamma ahead of 7.9 M China earthquake, Acta Geod. Geophys. Hu. 44, 3, 357-365, DOI: 10.1556/AGeod.44.2009.3.7.
  • Fleischer, R.L. (1981), Dislocation model for radon response to distant earthquakes, Geophys. Res. Lett. 8, 5, 477-480, DOI: 10.1029/GL008i005p00477.
  • Fleischer, R.L., and A. Mogro-Campero (1985), Association of subsurface radon changes in Alaska and the northeastern United States with earthquakes, Geochim. Cosmochim. Ac. 49, 4, 1061-1071, DOI: 10.1016/0016-7037(85)90319-9.
  • Freund, F.T. (2007), Pre-earthquake signals – Part I: Deviatoric stresses turn rocks into a source of electric currents, Nat. Hazards Earth Syst. Sci. 7, 5, 535-541, DOI: 10.5194/nhess-7-535-2007.
  • Geller, R.J., D.D. Jackson, Y.Y. Kagan, and F. Mulargia (1997), Earthquakes cannot be predicted, Science 275, 5306, 1616-1617, DOI: 10.1126/science.275.5306.1616.
  • Ghosh, D., A. Deb, and R. Sengupta (2009), Anomalous radon emission as precursor of earthquake, J. Appl. Geophys. 69, 2, 67-81, DOI: 10.1016/j.jappgeo.2009.06.001.
  • Hartmann, J. (2005), Difference information criterion for the analysis of a seismotectonic influence on a radon time-series at KSM site, Japan, Geophys. J. Int. 160, 3, 891-900, DOI: 10.1111/j.1365-246X.2005.02537.x.
  • Hartmann, J., and J.K. Levy (2005), Hydrogeological and gasgeochemical earthquake precursors – A review for application, Nat. Hazards 34, 3, 279-304, DOI: 10.1007/s11069-004-2072-2.
  • Hartmann, T., and H.-G. Wenzel (1995), The HW95 tidal potential catalogue, Geophys. Res. Lett. 22, 24, 3553-3556, DOI: 10.1029/95GL03324.
  • Hauksson, E., and J.G. Goddard (1981), Radon earthquake precursor studies in Iceland, J. Geophys. Res. 86, B8, 7037-7054, DOI: 10.1029/JB086iB08p07037.
  • Ihlen, E.A.F. (2012), Introduction to multifractal detrended fluctuation analysis in Matlab, Front. Physiol. 3, 141, DOI: 10.3389/fphys.2012.00141.
  • IMD (2009), India Meteorological Department website reports, available online at http://www.imd.gov.in/section/seismo/dynamic/welcome.htm.
  • King, C.-Y. (1986), Gas geochemistry applied to earthquake prediction: An overview, J. Geophys. Res. 91, B12, 12269-12281, DOI: 10.1029/JB091iB12p12269.
  • King, C.-Y., W. Zhang, and Z. Zhang (2006), Earthquake-induced groundwater and gas changes, Pure Appl. Geophys. 163, 4, 633-645, DOI: 10.1007/s00024-006-0049-7.
  • Kudryavtsev, S.M. (2004), Improved harmonic development of the Earth tidegenerating potential, J. Geodesy 77, 12, 829-838, DOI: 10.1007/s00190-003-0361-2.
  • Molchanov, O.A., and M. Hayakawa (1998), On the generation mechanism of ULF seismogenic electromagnetic emissions, Phys. Earth Planet. In. 105, 3-4, 201-210, DOI: 10.1016/S0031-9201(97)00091-5.
  • Monnin, M., and J.-L. Seidel (1988), A hypothetical high level of radon output before a major geophysical event: a theoretical study, C. R. Acad. Sci. Paris 307, 11, 1363-1368 (in French).
  • NEIC-USGS (2009), National Earthquake Information Center – US Geological Survey website report, available online at http://earthquake.usgs.gov/earthquakes/eqarchives/epic/epic_circ.php.
  • Nurujjaman, M., and A.N.S. Iyengar (2007), Realization of SOC behavior in a dc glow discharge plasma, Phys. Lett. A 360, 6, 717-721, DOI: 10.1016/j.physleta.2006.09.005.
  • Parotidis, M., E. Rothert, and S.A. Shapiro (2003), Pore-pressure diffusion: A possible triggering mechanism for the earthquake swarms 2000 in Vogtland/NW-Bohemia, central Europe, Geophys. Res. Lett. 30, 20, 2075, DOI: 10.1029/2003GL018110.
  • Ramola, R.C., M. Singh, A.S. Sandhu, S. Singh, and H.S. Virk (1990), The use of radon as an earthquake precursor, Nucl. Geophys. 4, 2, 275-287.
  • Ryabinin, G.V., V.A. Gavrilov, Y.S. Polyakov, and S.F. Timashev (2012), Crosscorrelation earthquake precursors in the hydrogeochemical and geoacoustic signals for the Kamchatka peninsula, Acta Geophys. 60, 3, 874-893, DOI: 10.2478/s11600-012-0031-y.
  • Scholz, C.H., L.R. Sykes, and Y.P. Aggarwal (1973), Earthquake prediction: A physical basis, Science 181, 4102, 803-810, DOI: 10.1126/science.181.4102.803.
  • Thomas, D. (1988), Geochemical precursors to seismic activity, Pure Appl. Geophys. 126, 2-4, 241-266, DOI: 10.1007/BF00878998.
  • Tsonis, A.A., P. Kumar, J.B. Elsner, and P.A. Tsonis (1996), Wavelet analysis of DNA sequences, Phys. Rev. E 53, 2, 1828-1834, DOI: 10.1103/PhysRevE.53.1828.
  • Virk, H.S., and B. Singh (1993), Radon anomalies in soil-gas and groundwater as earthquake precursor phenomena, Tectonophysics 227, 1-4, 215-224, DOI: 10.1016/0040-1951(93)90096-3.
  • Virk, H.S., and B. Singh (1994), Radon recording of Uttarkashi earthquake, Geophys. Res. Lett. 21, 8, 737-740, DOI: 10.1029/94GL00310.
  • Virk, H.S., and V. Walia (2001), Helium/radon precursory signals of Chamoli earthquake, India, Radiat. Meas. 34, 1-6, 379-384, DOI: 10.1016/S1350-4487(01)00190-1.
  • Wakita, H. (1996), Geochemical challenge to earthquake prediction, Proc. Natl. Acad. Sci. USA 93, 9, 3781-3786, DOI: 10.1073/pnas.93.9.3781.
  • Walia, V., H.S. Virk, B.S. Bajwa, and N. Sharma (2003), Relationships between radon anomalies and seismic parameters in N-W Himalaya, India, Radiat. Meas. 36, 1-6, 393-396, DOI: 10.1016/S1350-4487(03)00158-6.
  • Walia, V., H.S. Virk, T.F. Yang, S. Mahajan, M. Walia, and B.S. Bajwa (2005), Earthquake prediction studies using radon as a precursor in NW Himalayas, India: A case study, Terr. Atmos. Ocean. Sci. 16, 4, 775-804.
  • Walia, V., T.F. Yang, W.-L. Hong, S.-J. Lin, C.-C. Fu, K.-L. Wen, and C.-H. Chen (2009), Geochemical variation of soil-gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan, Appl. Radiat. Isotopes 67, 10, 1855-1863, DOI: 10.1016/j.apradiso.2009.07.004.
  • Weinlich, F.H., E. Faber, A. Boušková, J. Horálek, M. Teschner, and J. Poggenburg (2006), Seismically induced variations in Mariánské Lázně fault gas composition in the NW Bohemian swarm quake region, Czech Republic — A continuous gas monitoring, Tectonophysics 421, 1-2, 89-110, DOI: 10.1016/j.tecto.2006.04.012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1af65be0-fbec-4ac5-be0b-82c46bcb7601
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.