Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The above-threshold operation of a Fabry-Perot laser with a nonlinear PT (parity time) mirror is investigated. For the first time, the analysis accounts for gain saturation of an active medium as well as gain and loss saturation effects in the PT mirror. The obtained laser output intensity characteristics have been demonstrated as a function of various PT mirror parameters such as: the ratio of the PT structure period to laser operating wavelength, number of PT mirror primitive cells, and gain and loss saturation intensities of the PT mirror gain and loss layers. Two functional configurations of the laser have been considered: laser operating as a discrete device, and as a component of an integrated circuit. It has been shown that, in general, the laser operation depends on the PT mirror orientation with respect to the active medium of the laser. Moreover, when the laser radiation is outcoupled through the PT mirror to the free space, bistable operation is possible, when losses of the mirror’s loss layer saturate faster than gain of the gain layer. Furthermore, for a given saturation intensity of the mirror loss layers, the increase of the saturation intensity of the mirror gain layers causes increasing output intensity, i.e., the PT mirror additionally amplifies the laser output signal.
Słowa kluczowe
Rocznik
Tom
Strony
art. no. e139202
Opis fizyczny
Bibliogr. 28 poz., tab., wykr.
Twórcy
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
- National Institute of Telecommunications, ul. Szachowa 1, 04-894 Warsaw, Poland
Bibliografia
- [1] C.M. Bender and S. Boettcher, “Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry,” Phys. Rev. Lett., vol. 80, no. 24, pp. 5243–5246, Jun. 1998, doi: 10.1103/PhysRev-Lett.80.5243.
- [2] M. Kulishov, J.M. Laniel, N. Bélanger, J. Azaña, and D.V. Plant, “Nonreciprocal waveguide Bragg gratings,” Opt. Express, vol. 13, no. 8, pp. 3068–3078, Apr. 2005, doi: 10.1364/OPEX.13. 003068.
- [3] M. Kulishov, B. Kress, and H.F. Jones, “Novel optical characteristics of a Fabry-Perot resonator with embedded PT-symmetrical grating,” Opt. Express, vol. 22, no. 19, pp. 23164–23181, Sep. 2014, doi: 10.1364/OE.22.023164.
- [4] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D.N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett., vol. 106, no. 21, p. 213901, May 2011, doi: 10.1103/PhysRev-Lett.106.213901.
- [5] K.G. Makris, R. El-Ganainy, D.N. Christodoulides, and Z.H. Musslimani, “Beam Dynamics in PT Symmetric Optical Lattices,” Phys. Rev. Lett., vol. 100, no. 10, p. 103904, Mar. 2008, doi: 10.1103/PhysRevLett.100.103904.
- [6] M.C. Zheng, D.N. Christodoulides, R. Fleischmann, and T. Kottos, “PT optical lattices and universality in beam dynamics,” Phys. Rev. A, vol. 82, no. 1, p. 010103, Jul. 2010, doi: 10.1103/PhysRevA.82.010103.
- [7] Y. Sun, W. Tan, H. Li, J. Li, and H. Chen, “Experimental Demonstration of a Coherent Perfect Absorber with PT Phase Transition,” Phys. Rev. Lett., vol. 112, no. 14, p. 143903, Apr. 2014, doi: 10.1103/PhysRevLett. 112.143903.
- [8] R. El-Ganainy, K.G. Makris, D.N. Christodoulides, and Z.H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett., vol. 32, no. 17, pp. 2632–2634, Sep. 2007, doi: 10.1364/OL.32.002632.
- [9] L. Ge and R. El-Ganainy, “Nonlinear Modal Interactions in PT-Symmetric Lasers,” in Frontiers in Optics 2016, 2016, p. JW4A.186, doi: 10.1364/FIO.2016.JW4A.186.
- [10] Z. Feng, J. Ma, Z. Yu, and X. Sun, “Circular Bragg lasers with radial PT symmetry: design and analysis with a coupled-mode approach,” Photonics Res., vol. 6, no. 5, pp. A38–A42, May 2018, doi: 10.1364/PRJ.6.000A38.
- [11] M. Botey, W.W. Ahmed, J. Medina, R. Herrero, and K. Staliunas, “Non-Hermitian Broad Aperture Semiconductor Lasers Based on PT-Symmetry,” in 21st International Conference on Transparent Optical Networks (ICTON 2019), 2019, pp. 1–4, doi: 10.1109/ICTON.2019.8840291.
- [12] A. Mossakowska-Wyszyńska, P. Niedźwiedziuk, P. Witoński, and P. Szczepański, “Analysis of Light Generation in Laser with PT-Symmetric Mirror,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), 2018, p. JTu5A.50, doi: 10.1364/ BGPPM.2018.JTu5A.50.
- [13] Y. Zhu, Y. Zhao, J. Fan, and L. Zhu, “Modal Gain Analysis of Parity-Time-Symmetric Distributed Feedback Lasers”. IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 5, pp. 5–11, Sep. 2016, doi: 10.1109/JSTQE.2016.2537209.
- [14] S. Phang, A. Vukovic, H. Susanto, T.M. Benson, and P. Sewell, “Ultrafast optical switching using parity–time symmetric Bragg gratings”. J. Opt. Soc. Am. B, vol. 30, no. 11, pp. 2984–2991, 2013, doi: 10.1364/JOSAB. 30.002984.
- [15] S. Phang, A. Vukovic, H. Susanto, T.M. Benson, and P. Sewell, “Impact of dispersive and saturable gain/loss on bistability of nonlinear parity–time Bragg gratings”. Opt. Lett., vol. 39, no. 9, pp. 2603–2606, May 2014, doi: 10.1364/OL.39.002603.
- [16] J. Liu, X.-T. Xie, C.-J. Shan, T.-K. Liu, R.-K. Lee, and Y. Wu, “Optical bistability in nonlinear periodical structures with Ptsymmetric potential”. Laser Phys., vol. 25, no. 1, p. 015102, 2015, doi: 10.1088/1054-660X/25/1/015102.
- [17] K. Mukherjee and P.C. Jana, “Controlled optical bistability in parity-time-symmetric coupled micro-cavities: Possibility of all-optical switching”. Physica E Low Dimens. Syst. Nanostruct., vol. 117, p. 113780, Mar. 2020, doi: 10.1016/ j.physe.2019.113780.
- [18] D.R. Paschotta, “Pockels Effect”. [Online]. Available: www.rpphotonics. com/pockels_effect.html. [Accessed: 11. December 2020].
- [19] M. Kamp, J. Hofmann, A. Forchel, and S. Lourdudoss, “Ultrashort InGaAsP/InP lasers with deeply etched Bragg mirrors,” Appl. Phys. Lett., vol. 78, no. 26, pp. 4074–4075, Jun. 2001, doi: 10.1063/1.1377623.
- [20] M. Happach, et al., “Temperature-Tolerant Wavelength-Setting and -Stabilization in a Polymer-Based Tunable DBR Laser,” J. Light. Technol., vol. 35, no. 10, pp. 1797–1802, May 2017, doi: 10.1109/JLT.2017.2652223.
- [21] M. Smit, K. Williams, and J. van der Tol, “Past, present, and future of InP-based photonic integration,” APL Photonics, vol. 4, no. 5, p. 050901, May 2019, doi: 10.1063/1.5087862.
- [22] F.M. Soares, M. Baier, T. Gaertner, N. Grote, M. Moehrle, T. Beckerwerth, P. Runge, and M. Schell, “InP-Based Foundry PICs for Optical Interconnects,” Appl. Sci., vol. 9, no. 8, p. 1588, Apr. 2019, doi: 10.3390/app9081588.
- [23] NeoPhotonics Corporation, “Indium Phosphide PICs,” [Online]. Available: www.neophotonics.com/technology/indium-phosphide-pics/. [Accessed: 23. May 2019].
- [24] S. Phang, Theory and numerical modelling of parity-time symmetric structures for photonics, PhD thesis, University of Nottingham, 15 Jul. 2016. [Online]. Available: eprints.nottingham.ac.uk/32596/ [Accessed: 30. Nov. 2018]
- [25] P. Witoński, A. Mossakowska-Wyszyńska, and P. Szczepański, “Effect of Nonlinear Loss and Gain in Multilayer PT-Symmetric Bragg Grating,” IEEE J. Quantum Electron., vol. 53, no. 6, pp. 1–11, Dec. 2017, doi: 10.1109/JQE.2017.2761380.
- [26] O.V. Shramkova and G.P. Tsironis, “Resonant Combinatorial Frequency Generation Induced by a PT-Symmetric Periodic Layered Stack,” IEEE J. Sel. Top. QE., vol. 22, no. 5, p. 5000307, Sep./Oct. 2016, doi: 10.1109/JSTQE.2015.2505139.
- [27] H. Haug and L. Banyai, Red., Optical Switching in Low-Dimensional Systems. Plenum Press, New York, Springer US, 1989, pp. 35‒48.
- [28] E. Garmire and A. Kost, Red., Nonlinear Optics in Semiconductors I: Nonlinear Optics in Semiconductor Physics I, 1st edition. Academic Press US, 1998, pp. 364‒371.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1aee01e8-b392-49d8-b438-e347256e56e5