PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advanced oxidation processes for food industrial wastewater decontamination

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC), Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s) are characterized by a common chemical feature: the capability of exploiting high reactivity of HO radicals in driving oxidation processes which are suitable for achieving decolonization and odour reduction, and the complete mineralization or increase of bioavailability of recalcitrant organic pollutants.
Rocznik
Strony
61--71
Opis fizyczny
Bibliogr. 77 poz., tab.
Twórcy
  • Institute of Environmental Engineering, Czestochowa University of Technology, Brzeznicka 60a, 42-200 Czestochowa, Poland
autor
  • Institute of Environmental Engineering, Czestochowa University of Technology, Brzeznicka 60a, 42-200 Czestochowa, Poland
autor
  • Faculty of Fundamentals of Technology, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
Bibliografia
  • 1. Agustina T.E., Ang H.M., Pareek V.K. 2008. Treatment of winery wastewater using a photocatalytic/ photolytic reactor. Chem. Eng. J., 135 (1–2), 151–156.
  • 2. Altinbas M., Aydin A.F., Sevimli M.F., Ozturk I. 2003. Advanced oxidation of biologically pretreated Baker’s Yeast Industry effluents for high recalcitrant COD and color removal. J. Environ. Sci. Health A, 38 (10), 2229–2240.
  • 3. Álvarez P.M., Pocostales J.P., Beltrán F.J. 2011. Granular activated carbon promoted ozonation of a food-processing secondary effluent. J. Hazard. Mater., 185, 776–783.
  • 4. Amora C., Lucasa M.S., Pirraa A.J., Peresa J.A. 2012. Treatment of concentrated fruit juice wastewater by the combination of biological and chemical processes. J. Environ. Sci. Health A, 47 (12), 1809–1817.
  • 5. Andreozzi R., Canterino M., Di Somma I., Lo Giudice R., Marotta R., Pinto G., Pollio A. 2008. Effect of combined physico-chemical processes on the phytotoxicity of olive mill wastewaters. Wat. Res., 42, 1684–1692.
  • 6. Banu J.R., Anandan S., Kaliappan S., Yeom I-Y. 2008. Treatment of dairy wastewater using anaerobic and solar photocatalytic methods. Sol. Energy, 82, 812–819.
  • 7. Bayramoglu M., Kobya M., Eyvaz M., Senturk E. 2006. Technical and economic analysis of electrocoagulation for the treatment of poultry slaughterhouse wastewater. Sep. Purif. Technol., 51, 404–408.
  • 8. Beltran-Heredia J., Torregrosa J.,Dominguez J.R., Garcia J. 2000. Treatment of black-olive wastewaters by ozonation and aerobic biological degradation. Wat. Res., 34 (14), 3515–3522.
  • 9. Calvo L.S., Leclerc J.P., Tanguy G., Cames M.C., Paternotte G., Valentin G., Rostan A., Lapicque F. 2003. An electrocoaguhtion unit for the purification of soluble oil wastes of high COD. Environ. Prog., 22, 57–65.
  • 10. Canizares P., Hernández-Ortega M., Rodrigo M.A., Barrera-Díaz C.E., Roa-Morales G., Sáez C. 2009. A comparison between conductive-diamond electrochemical oxidation and other advanced oxidation processes for the treatment of synthetic melanoidins. J. Hazard. Mater., 164, 120–125.
  • 11. Chatzisymeon E., Stypas E., Bousios S., Xekoukoulotakis N.P., Mantzavinos D. 2008. Photocatalytic treatment of black table olive processing wastewater. J. Hazard. Mater., 154, 1090–1097.
  • 12. Chen X., Chen G., Yue P.L. 2000. Separation of pollutants from restaurant wastewater by electrocoagulation. Sep. Purif. Technol., 19, 65–76.
  • 13. Cicek N. 2003. A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater. CSBE, 43, 37–49.
  • 14. Coca M., Pena M., Gonzalez G. 2007. Kinetic study of ozonation of molasses fermentation wastewater. J. Hazard. Mater., 149, 364–370.
  • 15. Coca M., Pena M., Gonzalez G. 2005. Variables affecting efficiency of molasses fermentation wastewater ozonation. Chemosphere, 60, 1408–1415.
  • 16. de Sena F.R., Tambosi J.L., Genena A.K., Moreira R., Schröder H.F., José H.J. 2009. Treatment of meat industry wastewater using dissolved air flotation and advanced oxidation processes monitored by GC–MS and LC–MS. Chem. Eng. J., 152, 151–157.
  • 17. Durán A., Monteagudo J.M., Carnicer A. 2011. Photo-Fenton mineralization of synthetic apple-juice wastewater. Chem. Eng. J., 168, 102–107.
  • 18. Elaoud S.Ch., Panizza M., Cerisola G., Mhiri T. 2011. Electrochemical degradation of sinapinic acid on a BDD anode. Desalination, 272, 148–153.
  • 19. Gengec E., Kobya M., Demirbas E., Akyol A., Oktor K. 2012. Optimization of baker’s yeast wastewater using response surface methodology by electrocoagulation. Desalination, 286, 200–209.
  • 20. Gogate P.R., Pandit A.B. 2004. A review of imperative technologies for wastewater treatment: Oxidation technologies at ambient conditions. Advances in Environmental Research, 8 (3–4), 501–551.
  • 21. Habibi, M.H., Tangestaninejad, S., Yadollahi, B. 2001. Photocatalytic mineralisation of mercaptans as environmental pollutants in aquatic system using TiO2 suspension. Appl. Catal. B-Environ., 33 (1), 57.
  • 22. HanafiF., Assobhei O., Mountadar M., Detoxification and discoloration of Moroccan olive mill wastewater by electrocoagulation. J. Hazard. Mater., 2010, 174, 807–812.
  • 23. Herney-Ramirez J., Vicente M.A., Madeira L.M. 2010. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review. Appl. Catal. B-Environ., 98, 10–26.
  • 24. Kang J-X., Lu L., Zhan W., Li B., Li D-S., Ren Y-Z., Liu D-Q. 2011. Photocatalytic pretreatment of oily wastewater from the restaurant by a vacuum ultraviolet/TiO2 system. J. Hazard. Mater., 186, 849–854.
  • 25. Kannan N., Karthikeyan G., Tamilselvan N. 2006. Comparison of treatment potential of electrocoagulation of distillery effluent with and without activated Areca catechu nut carbon. J. Hazard. Mater., 137, 1803–1809.
  • 26. Khoufi, S., Aloui, F., Sayadi, S., Pilot scale hybrid process for olive mill wastewater treatment and reuse. Chem. Eng. Process., 2009, 48 (2), 643–650.
  • 27. Kobya M., Delipinar S. 2008. Treatment of the baker’s yeast wastewater by electrocoagulation. J. Hazard. Mater., 154, 1133–1140.
  • 28. Kobya M., Hiz H., Senturk E., Aydiner C., Demirbas E. 2006. Treatment of potato chips manufacturing wastewater by electrocoagulation. Desalination., 190, 201–211.
  • 29. LafiW.K., Shannak B., Al-Shannag M., Al-Anber Z., Al-Hasan M. 2009. Treatment of olive mill wastewater by combined advanced oxidation and biodegradation. Sep. Purif. Technol., 70, 141–146.
  • 30. Leaño E.P., Babel S. 2012. Effects of pretreatment methods on cassava wastewater for biohydrogen production optimization. Renew. Energ., 39, 339–346.
  • 31. Ledakowicz S., Solecka M., Zylla R. 2001. Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. J. Biotechnol., 89, 175–184.
  • 32. Lee H., Shoda M. 2008. Removal of COD and colour from livestock wastewater by the Fenton method. J. Hazard. Mater., 153, 1314–1319.
  • 33. Lucas M.S., Peres J.A., Puma G.L. 2010. Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/ UV/H2O2) in a pilot-scale bubble column reactor and process economics. Sep. Purif. Technol., 72, 235–241.
  • 34. Lucas M.S., Mosteo R., Maldonado M.I., Malato S., Peres J.A. 2009. Solar photochemical treatment of winery wastewater in a CPC reactor. J. Agric. Food Chem., 57 (23), 11242–11248.
  • 35. Marcucci M., Ciardelli G., Matteucci A., Ranieri L., Russo M. 2002. Experimental campaigns on textile wastewater for reuse by means of different membrane processes. Desalination, 149 (1-3), 137–143.
  • 36. Martins R.C., Quinta-Ferreira R.M. 2011. Remediation of phenolic wastewaters by advanced oxidation processes (AOPs) at ambient conditions: Comparative studies. Chem. Eng. Sci., 66, 3243–3250.
  • 37. Mason T.J. 2000. Large scale sonochemical processing: aspiration and actuality. Ultrason. Sonochem., 7(4), 145–149.
  • 38. Mavrov V., Be1ieres E. 2000. Reduction of water consumption and wastewater quantities in the food industry by water recycling using membrane processes. Desalination, 131, 75–86.
  • 39. Meriç S., Selçuk H., BelgiornoV. 2005. Acute toxicity removal in textile finishing wastewater by Fenton’s oxidation, ozone and coagulation-flocculation processes. Wat. Res., 39 (6), 1147–1153.
  • 40. Mert B.K., Yonar T., Kilic M.Y., Kestioglu K. 2010. Pre-treatment studies on olive oil mill effluent using physicochemical Fenton and Fenton-like oxidations processes. J. Hazard. Mater., 174, 122–128.
  • 41. Millamena O.M. 1992. Ozone treatment of slaughterhouse and laboratory wastewaters. Aquacult. Eng., 11 (1), 23–31.
  • 42. Monteagudo J.M., Durán A., Corral J.M., Carnicer A., Frades J.M., Alonso M.A. 2012. Ferrioxalate-induced solar photo-Fenton system for the treatment of winery wastewaters. Chem. Eng. J., 181– 182, 281–288.
  • 43. Muñoz I., Rieradevall J., Torrades F., Peral J., Doménech X. 2005. Environmental assessment of different solar driven advanced oxidation processes. Sol. Energy, 79 (4), 369–375.
  • 44. Navarro P., Sarasa J., Sierra D., Esteban S., Ovelleiro J.L. 2005. Degradation of wine industry wastewaters by photocatalytic advanced oxidation. Water Sci. Technol., 51 (1), 113–120.
  • 45. Navgire M., Yelwande A., Tayde D., Arbad B., Lande M. 2012. Photodegradation of Molasses by a MoO3-TiO2 Nanocrystalline Composite Material. Chin. J. Catal., 33, 261–266.
  • 46. Oller I., Malato S., Sánchez-Pérez J.A. 2011. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination – A review. Sci. Total Environ., 409 (20), 4141–4166.
  • 47. Pala A., Erden G. 2005. Decolorization of a baker’s yeast industry effluent by Fenton oxidation. J. Hazard. Mater. B, 127, 141–148.
  • 48. Pera-Titus M., García-MolinaM., Baños M.A., Giménez J., Esplugas S. 2004. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl. Catal. B-Environ., 47 (4), 219–256.
  • 49. Pérez M., Torrades F., Doménech X., Peral J. 2002. Fenton and photo-Fenton oxidation of textile effluents. Wat. Res., 36, 2703–2710.
  • 50. Qin Z., Liang Y., Liu Z., Jiang W. 2011. Preparation of InYO3 catalyst and its application in photodegradation of molasses fermentation wastewater. J. Environ. Sci., 23 (7), 1219–1224.
  • 51. Rivas F.J., Beltrán F.J., Gimeno O., Alvarez P. 2003. Treatment of brines by combined Fenton’s reagent-aerobic biodegradation II. Process modelling. J. Hazard. Mater., 96, 259–276.
  • 52. Rizzo L. 2011. Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Wat. Res., 45, 4311–4340.
  • 53. Roa-Morales G., Campos-Medina E., Aguilera- Cotero J., Bilyeu B., Barrera-Diaz C. 2007. Aluminium electrocoagulation with peroxide applied to wastewater from pasta and cookie processing. Sep. Purif. Technol., 54, 124–129.
  • 54. Rodrigo M.A., Canizares P., Sanchez-Carretero A., Saez C. 2010. Use of conductive-diamond electrochemical oxidation for wastewater treatment. Catal. Today, 151, 173–177.
  • 55. Sakthivel S., Neppolia B., Shankar M.V., Arabindoo B., Palanichamy M., Murugesan V. 2003. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energ. Mat. Sol. C., 77, 65–82.
  • 56. Sangave P.C., Gogate P.R., Pandit A.B., Combination of ozonation with conventional aerobic oxidation for distillery wastewater treatment Chemosphere, 2007, 68, 32–41.
  • 57. Sanz J., Lombraña J.I., De Luis A.M., Ortueta M., Varona F. 2003. Microwave and Fenton’s reagent oxidation of wastewater. Environ. Chem. Lett., 1, 45–50.
  • 58. Sarayu K., Swaminathan K., Sandhya S. 2007. Assessment of degradation of eight commercial reactive azo dyes individually and in mixture in aqueous solution by ozonation. Dyes Pigments, 75, 362–368.
  • 59. Satyawali Y., Balakrishnan M. 2008. Wastewater treatment in molasses-based alcohol distilleries for COD and colour removal: A review. Journal of Environmental Management 86, 481–497.
  • 60. Selma M.V., Allende A., López-Gálvez F., Conesa M.A., Gil M.I. 2008. Heterogeneous photocatalytic disinfection of wash waters from the fresh-cut vegetable industry. J. Food Protection, 71 (2), 286–292.
  • 61. Selma M.V., AllendeA., López-Gálvez F., Gil M.I. 2007. Different advanced oxidation processes for disinfection of wash waters from the fresh-cut industry. IOA Conference and Exhibition Valencia, Spain, 6.1, 1–8.
  • 62. Shu H. 2006. Degradation of dyehouse effluent containing C.I. Direct Blue 199 by processes of ozonation, UV/H2O2 and in sequence of ozonation with UV/H2O2. J. Hazard. Mater., 133, 92–98.
  • 63. Stasinakis A.S., Use of selected advanced oxidation processes (AOPs) for wastewater treatment – a mini review. Global NEST Journal, 2008, 10 (3), 376–385.
  • 64. Tarek S. Jamil, Montaser Y. Ghaly, Ibrahim E. El- Seesy, Eglal R. Souaya, Rabab A. Nasr 2011. A comparative study among different photochemical oxidation processes to enhance the biodegradability of paper mill wastewater. J. Hazard. Mater., 185, 353–358.
  • 65. Tokumura M., Ohta A., Znad H.T., Kawase Y. 2006. UV light assisted decolorization of dark brown colored coffee effluent by photo-Fenton reaction. Wat. Res., 40, 3775–3784.
  • 66. Tokumura M., Znad H.T., Kawase Y. 2008. Decolorization of dark brown colored coffee effluent by solar photo-Fenton reaction: Effect of solar light dose on decolorization kinetics. Wat. Res., 42, 4665–4673.
  • 67. Turhan K., Turgut Z. 2009. Decolorization of direct dye in textile wastewater by ozonization in a semi-batch bubble column reactor. Desalination, 242, 256–263.
  • 68. Ugurlu M., Karaoglu M.H. 2011. TiO2 supported on sepiolite: Preparation, structural and thermal characterization and catalytic behaviour in photocatalytic treatment of phenol and lignin from olive mill wastewater. Chem. Eng. J., 166, 859–867.
  • 69. Ulson de Souza S.M., Santos Bonilla K.A., Ulson de Souza A.A. 2010. Removal of COD and colour from hydrolyzed textile azo dye by combined ozonation and biological treatment. J. Hazard. Mater., 179 (1-3), 35–42.
  • 70. Ün Ü.T., Koparal A.S., Ögütveren Ü.B. 2009. Hybrid processes for the treatment of cattle-slaughterhouse wastewater using aluminum and iron electrodes. J. Hazard. Mater., 164, 580–586.
  • 71. Wu J., Doan H. 2005. Disinfection of recycled red-meat-processing wastewater by ozone. J. Chem. Technol. Biotechnol., 80, 828–833.
  • 72. Xu L.J., Sheldon B.W., Larick D.K., Carawan R.E. 2002. Recovery and utilization of useful by-products from egg processing wastewater by electrocoagulation. Poultry Sci., 81, 785–792.
  • 73. Zaleska A., Grabowska E. 2008. Podstawy technologii chemicznej. Nowoczesne procesy utleniania – ozonowanie, utlenianie fotokatalityczne, reakcja Fentona. Politechnika Gdańska, Gdańsk.
  • 74. Zayas P.T., Geissler G., Hernandez F. 2007. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes. J. Environ. Sci., 19, 300–305.
  • 75. Zhukova V., Sabliy L., Łagód G. 2010. Biotechnology of the food industry wastewater treatment from nitrogen compounds. Proceedings of ECOpole, 5 (1), 133–138.
  • 76. Żmudziński W., Preliminary results of glucose oxidation by photocatalysis on titanium dioxide – primary intermediates. Physicochem. Probl. Miner. Process., 45141–45151.
  • 77. Zorpas A.A., Costa C.N. 2010. Combination of Fenton oxidation and composting for the treatment of the olive solid residue and the olive mile wastewater from the olive oil industry in Cyprus. Bioresource Technol., 101, 7984–7987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ae58636-eff9-46ae-8ae5-ec142ae9a3df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.