PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Four-dimensional uncertain multi-objective multi-item transportation problem

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper considers a four-dimensional multi-objective multi-item transportation problem (4DMOMITP), where all the parameters are regarded as uncertain variables. In this paper, three mathematical models, namely expected value model (EVM), optimistic value model (OVM) and dependent optimistic-constrained model (DOCM), are discussed for the uncertain model of 4DMOMITP. These models are converted into their corresponding deterministic forms using different ranking criteria from uncertainty theory. These deterministic models are then solved by using the Lingo 18.0 software, utilizing three different classical approaches for obtaining a solution. A numerical example is given to illustrate the application of the model and the solution algorithm. A sensitivity analysis for the OVM and DOCM models has also been performed with respect to the confidence levels.
Rocznik
Strony
52--73
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
  • Department of Mathematics and Humanities, S.V. National Institute of Technology, Gujarat, India
  • Department of Mathematics and Humanities, S.V. National Institute of Technology, Gujarat, India
Bibliografia
  • [1] Barman, H., Pervin, M., Roy, S. K., and Weber, G.-W. Back-ordered inventory model with inflation in a cloudy-fuzzy environment. Journal of Industrial & Management Optimization 17, 4 (2021), 1913–1941.
  • [2] Bera, S., Giri, P. K., Jana, D. K., Basu, K., and Maiti, M. Multi-item 4D-TPS under budget constraint using rough interval. Applied Soft Computing 71 (2018), 364–385.
  • [3] Cerulli, R., D’Ambrosio, C., and Gentili, M. Best and worst values of the optimal cost of the interval transportation problem. In Optimization and Decision Science: Methodologies and Applications (Cham, 2017), A. Sforza and C. Sterle, Eds., Springer International Publishing, pp. 367–374.
  • [4] Charnes, A., and Cooper, W. W. Programming with linear fractional functionals. Naval Research Logistics Quarterly 9, 3-4 (1962), 181–186.
  • [5] Chen, B., Liu, Y., and Zhou, T. An entropy based solid transportation problem in uncertain environment. Journal of Ambient Intelligence and Humanized Computing 10, 1 (2019), 357–363.
  • [6] Chen, L., Peng, J., and Zhang, B. Uncertain goal programming models for bicriteria solid transportation problem. Applied Soft Computing 51 (2017), 49–59.
  • [7] Cui, Q., and Sheng, Y. Uncertain programming model for solid transportation problem. Information 16, 2(A) (2013), 1207–1213.
  • [8] Dalman, H. Uncertain programming model for multi-item solid transportation problem. International Journal of Machine Learning and Cybernetics 9, 4 (2018), 559–567.
  • [9] D’Ambrosio, C., Gentili, M., and Cerulli, R. The optimal value range problem for the Interval (immune) Transportation Problem. Omega 95 (2020), 102059.
  • [10] Guo, H., Wang, X., and Zhou, S. A transportation problem with uncertain costs and random supplies. International Journal of e-Navigation and Maritime Economy 2 (2015), 1–11.
  • [11] Halder, S., Das, B., Panigrahi, G., and Maiti, M. Some special fixed charge solid transportation problems of substitute and breakable items in crisp and fuzzy environments. Computers & Industrial Engineering 111 (2017), 272–281.
  • [12] Haley, K. B. New methods in mathematical programming—the solid transportation problem. Operations Research 10, 4 (1962), 448–463.
  • [13] Hitchock, F. L. The distribution of a product from several sources to numerous locations. Journal of Mathematical Physics 20 (1941), 224–230.
  • [14] Jiménez, F., and Verdegay, J. L. Uncertain solid transportation problems. Fuzzy Sets and Systems 100, 1-3 (1998), 45–57.
  • [15] Kakran, V. Y., and Dhodiya, J. M. Fuzzy programming technique for solving uncertain multi-objective, multi-item solid transportation problem with linear membership function. In Advanced Engineering Optimization Through Intelligent Techniques (Singapore, 2020), R. Venkata Rao and J. Taler, Eds., Springer Singapore, pp. 575–588.
  • [16] Kakran, V. Y., and Dhodiya, J. M. Uncertain multi-objective transportation problems and their solution. In Computational Management: Applications of Computational Intelligence in Business Management, S. Patnaik, K. Tajeddini, and V. Jain, Eds. pringer International Publishing, Cham, 2021, pp. 359–380.
  • [17] Kolmogorov, A. N. Foundations of the Theory of Probability: Second English Edition. Dover Publications, Inc., 2018.
  • [18] Kropat, E., and Weber, G.-W. Fuzzy target-environment networks and fuzzy-regression approaches. Numerical Algebra, Control & Optimization 8, 2 (2018), 135–155.
  • [19] Kropat, E., Weber, G.-W., and Tirkolaee, E. B. Foundations of semialgebraic gene-environment networks. Journal of Dynamics & Games 7, 4 (2020), 253–268.
  • [20] Liu, B. Uncertainty Theory, vol. 154 of Studies in Fuzziness and Soft Computing. Springer, Berlin, Heidelberg, 2007.
  • [21] Liu, B. Theory and Practice of Uncertain Programming, vol. 239 of Studies in Fuzziness and Soft Computing. Springer, Berlin, Heidelberg, 2009.
  • [22] Liu, B. Uncertainty Theory, vol. 300 of Studies in Computational Intelligence. Springer, Berlin, Heidelberg, 2010.
  • [23] Lotfi, R., Weber, G.-W., Sajadifar, S. M., and Mardani, N. Interdependent demand in the two-period newsvendor problem. Journal of Industrial & Management Optimization 16, 1 (2020), 117–140.
  • [24] Moore, R. E. Interval Analysis. Prentice-Hall, 1966.
  • [25] Muthuperumal, S., Titus, P., and Venkatachalapathy, M. An algorithmic approach to solve unbalanced triangular fuzzy transportation problems. Soft Computing 24, 24 (2020), 18689–18698.
  • [26] Ojha, A., Das, B., Mondal, S., and Maiti, M. An entropy based solid transportation problem for general fuzzy costs and time with fuzzy equality. Mathematical and Computer Modelling 50, 1-2 (2009), 166–178.
  • [27] Pratihar, J., Kumar, R., Edalatpanah, S. A., and Dey, A. Modified Vogel’s approximation method for transportation problem under uncertain environment. Complex & Intelligent Systems 7 (2021), 29–40.
  • [28] Revathi, A. N., and Mohanaselvi, S. A fuzzy goal programming approach to four dimensional multi level multi objective multi item fractional transportation problem under uncertain environment. Advances in Dynamical Systems and Applications (ADSA) 16, 2 (2021), 927–948.
  • [29] Revathi, A. N., Mohanaselvi, S., and Jana, D. K. Uncertain multi objective multi item four dimensional transportation problem with vehicle speed. In I3CAC, 7–8 June 2021, Bharath University, Chennai, India (2021).
  • [30] Roy, S. K., Pervin, M., and Weber, G.-W. A two-warehouse probabilistic model with price discount on backorders under two levels of trade-credit policy. Journal of Industrial & Management Optimization 16, 2 (2020), 553–578.
  • [31] Sahoo, P., Jana, D. K., Pramanik, S., and Panigrahi, G. Uncertain four-dimensional multi-objective multi-item transportation models via GP technique. Soft Computing 24 (2020), 17291–17307.
  • [32] Samanta, S., Jana, D. K., Panigrahi, G., and Maiti, M. Novel multi-objective, multi-item and four-dimensional transportation problem with vehicle speed in LR-type intuitionistic fuzzy environment. Neural Computing and Applications 32 (2020), 11937–11955.
  • [33] Schell, E. Distributuin of s product by several properties. In Direstorate of Management Analysis, Proceedings of the Second Symposium in Linear Programming 2, 615, DCS/Comptroller HQUSAF (1955).
  • [34] Sheng, Y., and Yao, K. A transportation model with uncertain costs and demands. Information: An international interdisciplinary journal 15, 8 (2012), 3179–3186.
  • [35] Williams, A. A stochastic transportation problem. Operations Research 11, 5 (1963), 759–770.
  • [36] Zadeh, L. A. Fuzzy sets. Information and Control 8, 3 (1965), 338–353.
  • [37] Zhang, B., Peng, J., Li, S., and Chen, L. Fixed charge solid transportation problem in uncertain environment and its algorithm. Computers & Industrial Engineering 102, C (2016), 186–197.
  • [38] Zhao, G., and Pan, D. A transportation planning problem with transfer costs in uncertain environment. Soft Computing 24, 4 (2020), 2647–2653.
  • [39] Zimmermann, H.-J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems 1, 1 (1978), 45–55.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1adf9094-2261-494b-a0e6-cd885b073259
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.