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Abstract Voice pathology assessment using sustained vowels has proven to be effective and reliable. 
However, only a few studies regarding detection of pathological speech based on continuous speech are 
available. In this study we evaluate the usefulness of various regression models trained on continuous 
speech recordings from Saarbruecken Voice Database in the detection of voice pathologies. The recordings 
were used for extraction of speaker embeddings called x-vectors based on mel-frequency cepstral 
coefficients and gammatone frequency cepstral coefficients. Since the dataset used in this study is 
imbalanced, various over- and undersampling techniques were applied to the training set to ensure 
robustness of models’ decision boundaries. The models were trained on both imbalanced and resampled 
training sets using 5-fold cross-validation. The best results were obtained for Multi Layer Perceptron 
trained on GFCC-based x-vectors, achieving accuracy of 0.8184, F1-score of 0.8212, and ROC AUC score of 
0.8810 for the testing set. 
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1. Introduction  

Computer aided voice pathology detection is a promising tool for physicians and speech therapists. It has 
become an even more important field of study now, when the need for telemedicine technologies increased 
significantly due to the epidemiological situation and reduced access to traditional healthcare. Developing 
an efficient and stable algorithm for laryngeal pathology assessment based on the speech signal can not only 
help lessen the transmission of many infectious diseases, but also maintain the continuum of medical care 
by minimizing the exposure of medical staff [1]. What is more, it can help improve otolaryngology access in 
rural settings and significantly reduce the expenses incurred by both patient and peripheral medical centers 
[2]. 

Many voice pathology detection algorithms incorporate features extracted from sustained vowels. 
Sustained vowels are used during standard medical examination of vocal folds and are therefore a natural 
choice for development of voice pathology assessment methods. This approach proved to be extremely 
effective. Hemmerling et al. [3] obtained the accuracy rate of 100% in the classification of healthy and 
pathological voice using vowel /a/ and random forest classifier. Fang et al. [4] used deep neural network 
(DNN) and reached the accuracy rate of 99.14% based on 13-dimensional mel-frequency cepstral 
coefficients (MFCC) features extracted from recordings of vowel /a/. Al-Nasheri et al. [5] investigated 22 
acoustical parameters extracted from Multidimensional Voice Program [6] and their applicability in the 
pathological speech detection. The parameters used can be divided into several types: frequency related, 
intensity related, noise related and tremor related. The authors used a statistical approach, performing a t-
test to verify if the mean values of the two classes (healthy and pathological voice) are significantly different. 
This method yielded the accuracy rate of 99.68%. 

Despite its effectiveness, medical diagnosis based on sustained vowels has its drawbacks – it cannot be 
performed based on the conversation between the physician and the patient. Some works addressed this 
issue and proposed algorithms based on continuous speech. Vasilakis and Stylianou [7] performed a 
discrimination of pathological and healthy speech using short-term jitter estimations and reached the score 
of 87.8% in terms of area under ROC curve. Cordeiro et al. [8] yielded the accuracy rate of 74% in the 
detection of unilateral paralysis of vocal folds and vocal fold edema using 12 MFCC features and Gaussian 
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Mixture Models. Guedes et al. [9] attempted to diagnose three diseases: dysphonia, vocal cords paralysis 
and chronic laryngitis using transfer learning approach and neural network classifiers. The best results 
were obtained for the detection of vocal cords paralysis – F1-score reached 80%. However, the multinomial 
classification of all three diseases resulted in the F1-score of only 40%.  

Above-mentioned works used open-access speech corpora in German and English. Nonetheless, studies 
regarding diagnosis of vocal tract pathologies in Polish speaking patients are also available, e.g. the work 
published by Wszołek et al. [10] or the paper published by Engel et al. [11]. 

The main objective of this study is to evaluate the usefulness of various regression models in the 
detection of voice pathologies based on continuous speech. It is worth noting that even in text-dependent 
scenario, continuous speech utterances may vary in length significantly. As most of the classification 
algorithms require fixed size of the input data, the signals which are too long are often clipped – it allows to 
overcome the problem with the input size, but leads to information loss. Another solution is zero-padding 
of the signals that are too short – it preserves all the information, but introduces redundancy. In this study, 
the approach based on speaker embeddings called x-vectors [12] is used. The main advantage of the x-
vectors is the fact that they can be extracted from the signals differing in length, while the obtained 
embeddings are fixed sized and can therefore be used as the input data for any classification algorithm. 
What is more, the x-vectors approach has proven to be effective in other medical applications, i.e. 
Parkinson's disease detection [13, 14]. Importantly, the studies regarding usage of x-vectors in medical 
diagnosis used only MFCC features. Moreover, to the best of our knowledge, no studies available in literature 
carried out the comparative analysis of results obtained using different regressive models or attempted to 
establish the most suitable model for voice pathology detection. 

The rest of this paper is organized as follows. In section 2 the speech corpus, data preprocessing, feature 
extraction and models' training are described. In section 3 obtained results are presented and discussed. In 
section 4 the work is concluded and future perspectives are discussed. 

2. Proposed method 

2.1. Saarbruecken Voice Database 

German speech corpus Saarbruecken Voice Database (SVD) [15] was used to train and evaluate models 
detecting pathological speech. The SVD contains sustained vowels and the phrase Guten Morgen, wie geht 
es Ihnen? uttered by 628 healthy people and 1269 people suffering from different diseases, e.g. various types 
of dysphonia, chronic laryngitis, vocal cords paralysis. In this study we do not differentiate the diseases and 
only binary classification aimed to detect any pathology is performed. 

The SVD subset consisting of uttered phrase is divided into two stratified sets: training set consisting of 
80% of the data and testing set consisting of 20% of the data. The details of the sets are listed in Tab. 1. 

Tab. 1. Details of the two subsets of the speech corpus  
used for models' training and evaluation: training set and testing set. 

 Number of utterances 

Set Sick Healthy 

Training 1010 507 

Testing 259 121 

 
2.2. Data preprocessing and feature extraction 

Firstly, all the recordings were downsampled from 50 kHz to 16 kHz. They were used to extract so-called x-
vectors – fixed-dimensional speaker embeddings designed for text independent speaker recognition [12, 
16]. The x-vectors are meant to capture speaker characteristics over the entire utterance and are suitable 
for analysis of utterances differing in length.  

Sampling frequency of 16 kHz was chosen for two reasons: 1. it is the sampling frequency of the 
Voxceleb2 corpus used for training of x-vector extractors used in this study and SVD database was down 
sampled in order to match this sampling rate 2. even though it is recommended to use higher sampling 
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frequencies for speech analysis [17], some of the medical speech corpora (i.e. LANNA speech corpus 
containing recordings of children suffering from specific language impairment [18]) are recorded with a 
sampling rate of only 16 kHz and the proposed method is meant to be suitable for their analysis as well. 

Recently, a study on the effect of feature sets on speaker identification was presented by Farooq et al. 
[19]. According to the authors, x-vectors based on gammatone frequency cepstral coefficients (GFCC) [20] 
provide better results than standard x-vectors based on mel-frequency cepstral coefficients (MFCC) (see 
Fig. 1). We decided to verify if they would also be more accurate for voice pathology detection task. 

The embeddings used in this study were extracted using Kaldi speech recognition toolkit [21] – the 
details of the extraction procedure depending on the feature set used are described below. 

 

Fig. 1. Sample features extracted from the phrase Guten Morgen, wie geht es Ihnen? uttered by the same 
person: a) MFCC features, b) GFCC features. 

2.2.1. MFCC-based x-vectors 

The standard MFCC-based x-vectors were extracted using a pretrained model provided by Kumar et al. [22]. 
Firsty, the 30-dimensional MFCC features were extracted from each signal using a frame width of 25 ms and 
an overlap of 15 ms, following the recipe provided by the authors. Then the default energy-based Kaldi voice 
activity detection (VAD) algorithm was performed and the frames containing non-speech were removed. 
The obtained features were fed to the pretrained model and 512-dimensional x-vectors were extracted. 

The analysis performed by Chaudhari and Dhonde [23] showed that 30-dimensional MFCC features 
provide better results in speaker recognition task than smaller number of features, while maintaining the 
acceptable computational time. What is more, 30-dimensional MFCC features were used by Kumar et al., 
whose pretrained model is used in this study. We decided to match the dimensionality of MFCC and GFCC 
feature sets to ensure that any differences in performance metrics values would not be caused simply by 
the different feature size but only by the filterbank (i.e. mel and gammatone) used. 

2.2.2. GFCC-based x-vectors 

The VoxCeleb2 corpus [24] containing over a million utterances from approximately 7300 speakers was 
used to train a deep neural network (DNN) performing a speaker identification task. The architecture of the 
DNN is based on the pretrained model by Kumar et al. – for details, see Ref. [22]. 

Firstly, the 30-dimensional gammatone frequency representation (GTF) of signals and the cepstral 
coefficients were calculated using a frame width of 20 ms and overlap of 10 ms. Then autoregressive moving 
average (ARMA) filtering was applied and long-term signal variability (LTSV) [25] was calculated. Finally, 
VAD was performed based on voicing and LTSV probability. All the procedures were performed using 
Featxtra Toolbox for Kaldi [26]. 

The extracted GFCC features were used to train the abovementioned DNN implemented in PyTorch [27]. 
The DNN was then used for 512-dimensional x-vectors extraction from signals with a length in the range of 
32-500 frames. 

 

2.3. Training set resampling 

Most of the machine learning algorithms perform poorly, when the dataset used for their training is highly 
imbalanced – the classifiers tend to be biased towards the majority class, as it still allows them to obtain 
relatively high accuracy rates [28]. To overcome this problem, data resampling techniques are used, 
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providing the model with a more balanced dataset. In some cases these techniques may result in obtaining 
more robust decision boundaries of the model and, hence, better results of minority class classification. 

Seven oversampling techniques: 
• SMOTE [29], 
• SMOTEN [29], 
• SVM-SMOTE [30],  
• Borderline SMOTE [31], 
• KMeans-SMOTE [32], 
• ADASYN [33], 
• random minority oversampling with replacement, 

and ten undersampling techniques: 
• One-Sided Selection [34],  
• Neighbourhood Cleaning Rule [35],  
• Condensed Nearest Neighbour [36],  
• Edited Nearest Neighbours [37],  
• Repeated Edited Nearest Neighbours [38], 
• NearMiss [39],  
• AllKNN [40],  
• extraction of majority-minority Tomek links [40], 
• undersampling with Cluster Centroids [41],  
• random majority undersampling with replacement 

implemented in Python's imbalanced-learn package [42] were applied to the training sets. The testing set 
was not resampled to ensure reliability of models evaluation results. 

2.4. Models training 

Sixteen different regression models (listed in Tab. 2) implemented in Python's scikit-learn library [43] were 
trained on MFCC-based and GFCC-based embeddings using a 5-fold cross-validation algorithm. Feature 
selection technique based on ANOVA F-value, namely scikit-learn's SelectKBest, was applied to reduce 
feature dimensionality, leading to reduction of training time and models' overfitting. Models' 
hyperparameters and number of features were optimized using Optuna framework [44]. The best model 
(i.e. the model yielding the highest ROC AUC score on the testing set) was additionally trained and optimized 
on resampled training sets.  

3. Experimental results 

Pathological speech detection is a binary task. Since the SVD contains only one continuous speech utterance 
per speaker, the two subsets used for models training and evaluation do not overlap in terms of the speakers 
involved and the classification may be considered to be speaker independent. 

The following metrics were used to evaluate proposed models' performance [45, 46]: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
⋅ 100%, (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
⋅ 100%, (2) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2⋅𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
⋅ 100%, (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
⋅ 100%, (4) 

𝑅𝑂𝐶𝐴𝑈𝐶 = ∫ 𝑅𝑂𝐶(𝑡)𝑑𝑡
1

0
, (5) 

where TN stands for true negative, TP stands for true positive, FN stands for false negative, FP stands for 
false positive and ROC stands for receiver operating characteristic curve constructed as a plot of recall 
versus false positive rate. The area under a ROC curve (ROC AUC) can be interpreted as the probability that 



Vibrations in Physical Systems, 32(1):2021108, 2021 DOI: 10.21008/j.0860-6897.2021.1.08 

 

5 of  8 

the binary classifier will yield a higher value for a randomly chosen positive instance than for a randomly 
chosen negative instance [45]. 

The ROC AUC score yielded for the testing set was used to choose the best model. For the MFCC-based 
x-vectors, the best ROC AUC was obtained by the NuSVR classifier (see Tab. 2). On the other hand, the best 
results for the GFCC-based x-vectors were obtained by Multi Layer Perceptron (MLP). Moreover, the GFCC-
based models proved to be superior to the models based on MFCC features, yielding higher ROC AUC scores 
in almost all cases while using fewer features: MFCC-based NuSVR reached reported results using 511 
features, while GFCC-based MLP used only 480 features. GFCC-based MLP was therefore chosen for further 
evaluation using resampled training sets. 

Tab. 2. ROC AUC scores yielded for testing set by evaluated regression models. The best results obtained 
by MFCC-based and GFCC-based models are boldface. 

 ROC AUC 
Regression model MFCC-based GFCC-based 

Logistic 0.6652 0.7203 

Ridge 0.8242  0.8627 
SGD 0.6308 0.8434 

Elastic Net 0.8231 0.7050 
ARD 0.8029 0.8762 

Bayesian Ridge 0.8457 0.8749 
Huber 0.7596 0.8493 

Radius Neighbors 0.6780 0.8084 
Poisson 0.8402 0.8082 

AdaBoost 0.7751 0.8382 
Extra Trees 0.7644 0.8294 

Random Forest 0.7692 0.8321 
LDA 0.7261 0.7025 

KNeighbors 0.8075 0.8590 
MLP 0.7306 0.8810 

NuSVR 0.8490 0.8611 
 

Tab. 3. Classification performance metrics obtained for validation folds and testing set by GFCC-based 
MLP. The standard deviation of each metric yielded for validation folds is reported in the brackets. 

 
Original data Data oversampled using 

SVM-SMOTE technique 
Data undersampled using 

TomekLinks technique 
Metric Validation folds Testing set Testing set Testing set 

Accuracy 0.8062 (±0.0193) 0.8184 0.8105 0.8105 
Precision 0.7068 (±0.0441) 0.8282 0.8240 0.8240 

Recall 0.7258 (±0.0617) 0.8184 0.8105 0.8105 
F1-score 0.7139 (±0.0333) 0.8212 0.8140 0.8140 
ROC AUC 0.8713 (±0.0193) 0.8810 0.8807 0.8639 

 
The values of performance metrics obtained for testing sets by MLPs trained on original (non-

resampled), oversampled, and undersampled GFCC-based training sets are reported in Tab. 3. Additionally, 
the mean values of the results yielded for validation folds by the model trained on the original training set 
are provided. The thresholds used during the binary classification process were determined based on the 
ROC curve analysis. To keep the results clear, only the values obtained using the best over- and 
undersampling techniques, namely SVM-SMOTE and extraction of majority-minority Tomek links, are 
provided. 

The standard deviation of performance metrics values obtained for validation folds are small, implying 
model’s stability. The small difference between ROC AUC yielded for validation folds and testing set shows 
model’s good generalization abilities. The difference between binary metrics (i.e. precision, recall, F1-score) 
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obtained for validation folds and testing set might be attributed to smaller amount of data in training folds 
than in the set used for training of the final model. 

Applying various resampling techniques did not improve the performance of the model. Both 
undersampling and oversampling of the training set led to a small decrease of the performance for testing 
set, suggesting that models trained on the non-resampled data may be a better choice if they were to be 
used in real-life scenario. 

Unfortunately, other studies regarding pathological speech detection based on continuous speech 
provide only the results obtained during the cross-validation process. According to Tabe-Bordbar et al. [47] 
and Rao et al. [48], the classifier should not be evaluated only based on cross-validation results, as this 
approach does not provide the full insight into the classifier's generalization abilities and the results may 
be misleading. Moreover, the studies providing classification metrics values obtained for isolated testing 
set used sustained vowels instead of continuous speech and therefore could not be directly compared with 
the method proposed in this paper. 

4. Conclusions  

In this study an x-vector approach to speaker-independent voice pathology assessment based on 
continuous speech is proposed. X-vectors based on MFCC and GFCC features were extracted using 
pretrained model and DNN trained to perform speaker verification task, respectively. Various regression 
models and resampling techniques were tested to ensure choosing the most suitable classifier. The results 
are promising – mean accuracy of 0.8062, mean F1-score of 0.7139, and mean ROC AUC score of 0.8713 on 
validation folds and accuracy of 0.8184, F1-score of 0.8212, and ROC AUC score of 0.8810 on the testing set 
were obtained by the best model, namely GFCC-based MLP. Even though the results are worse than the best 
results reported for classifiers trained on sustained vowels, the accuracy of the proposed method yielded 
for testing set exceeds the highest accuracy rates reported for continuous speech-based classifiers 
described in literature. What is more, the x-vector approach enables using signals with different lengths, 
overcoming one of the biggest problems with using continuous speech signals with machine learning 
algorithms requiring fixed size of the input data. Finally, the study shows superiority of GFCC-based x-
vectors over MFCC-based x-vectors in the detection of voice pathology.  

The x-vector extractors were trained on Voxceleb2 speech corpus which consists of utterances in English 
and used for embedding extraction from the SVD corpus which consists of German speech. Despite the 
differences in languages of both corpora, the obtained results of voice pathology assessment are good. It 
may suggest that the proposed method is language-independent and should be suitable also for tests in 
other languages. Nevertheless, both English and German are Germanic languages, so further evaluation 
using languages from other language groups, e.g. Slavic languages, should be performed. 

In the future, separate models for males and females may be trained and evaluated, as this approach has 
been found to provide better results than the gender-independent approach presented in this study [3, 49]. 
The proposed method should also be evaluated on other datasets containing continuous speech, e.g. 
Massachusetts Eye and Ear Infirmary Database (MEEI) [50]. 
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