PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Influence of Semi-Active Suspension Characteristics on the Driving Comfort

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article analyzes the influence of modern-day vehicle suspension characteristics on the passenger’s comfort sensation. The cars with air suspension were selected for the experiments and the suspension was equipped with mode selection options – “Comfort” and “Sport” . A sinusoidal manoeuvre was ensured with a steering wheel rotation robot. The experimental tests were carried out by changing car suspension modes and wheel sizes. The experiments and data processing were carried out in accordance with the provisions of the ISO 2631–1 international standard. In the experimental test, the longitudinal and lateral acceleration projections captured by the sensor and roll rate of the vehicle were set to provide the most comfortable adjustment of the car suspension mode. After filtering the measured vertical acceleration values, the comfort sensation was expressed as the root mean square (RMS) of vibration acceleration value. After evaluating the passenger’s sense of comfort, a summary of the effect of the car suspension-driving mode was provided.
Bibliografia
  • 1. Celko J., Decky M., Kovas M. An analysis of vehicle – road surface interaction for classification of IRI in the of Slovak PMS, Maintenance and Reliability, 1, 2009, 15–21.
  • 2. Dąbrowski K., Ślaski G. Method and algorithm of automatic estimation of road surface type for variable damping control, Scientific Conference on Automotive Vehicles and Combustion Engine, 2016, 1–10.
  • 3. Dertimanis V.K., Chatzi E.N. LQR – UKF active comfort control of passenger vehicles with uncertain Dynamics. IFAC-PapersOnLine, 2018, 120–125.
  • 4. Ikenaga S., Lewis F.L. Campos J. Active suspension control of ground vehicle based on a full-vehicle model. Automation & Robotics Research Institute the University of Texas at Arlington, 2006.
  • 5. ISO 2631–1:Mechanical Vibration and Shock – Evaluation of Human Exposure to Whole Body Vibration – Part International Organization for Standardization. Geneva, 1997.
  • 6. Mansfield N. J. Human Response to Vibrations. CRC Press, 2005.
  • 7. Pikosz H., Ślaski G. Charakterystyki elementów sprężystych i tłumiących zawieszenia samochodu osobowego oraz zastępcze charakterystyki ich modeli, Logistyka, systemy transportowe, bezpieczeństwo w transporcie – LOGITRANS, 2010, 1–10.
  • 8. Rimell A.N., Mansfield N.J. Design of digital filters for frequency weightings required for risk assessments of workers exposed to vibration. Industrial Health, 45, 2007, 512–519.
  • 9. Sayers M.G.L., Tweddle A.L., Every J., Wiegand A. Changes in drive phase lower limb kinematics during a 60 min cycling time trial. Journal of Science and Medicine in Sport, 2012, 169–174.
  • 10. Sande T.P.J., Besselink I.J.M., Nijmeijer H. Rulebased control of a semi-active suspension for minimal sprung mass acceleration: design and measurement. Vehicle System Dynamics, 54(3), 2016, 281–300.
  • 11. Ślaski G. The influence of adaptive damping level on vehicle vibration comfort–passenger car experimental tests results. Proc. of 7th International Conference “Transbaltica 2011”, 2011, 200–205.
  • 12. Sugai H., Buma S., Kanda R., Yoshioka K., Hasegawa M. Preview Ride Comfort Control for Electric Active Suspension, Proceedings of the FISITA 2012 World Automo-tive Congress, Lecture Notes in Electrical Engineering, 198, 2012, 147–161.
  • 13. Tamboli D., Barter S., Jones R. On the growth of cracks from etch pits and the scatter associated with them under a miniTWIST spectrum. International Journal of Fatigue, 2018, 10–16.
  • 14. Wang H.P., Ghazally I.Y.M., Tian Y. Model-free fractional-order sliding mode control for an active vehicle suspension system. Advances in Engineering Software, 115, 2018, 452–461.
  • 15. Wang Y., Zhao W., Zhou G., Gao Q., Wang C. Suspension mechanical performance and vehicle ride comfort applying a novel jounce bumper based on negative Poisson’s ratio structure. Advances in Engineering Software 122(October 2017), 2018, 1–12.
  • 16. Wang W., Hou Z. Physical Parametric Model of an Automotive Electrohydraulic Semiactive Damper. IEEE Transactions on Vehicular Technology, 2019, 1–10.
  • 17. Więckowski D., Dąbrowski K., Ślaski G. Adjustable shock absorber characteris-tics testing and modelling. In IOP Conf. Series: Materials Science and Engineering, 421, 2018, 1–10.
  • 18. Žuraulis V., Pečeliūnas R., Jakutis G. Semi-active suspension influence on comfort sensation of vehicle occupant, 2014, 116–124.
  • 19. Žuraulis V., Sokolovskij E. Vehicle velocity relation to slipping trajectory change: an option for traffic accident reconstruction. Promet – Traffic & Transportation, 30(4), 2018, 395–406.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ad234bc-925e-4c0b-9bcd-21a6f5df4f62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.