Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The work reports on the development of random three-dimensional Laguerre-Voronoi computational models for open cell foams. The proposed method can accurately generate foam models having randomly distributed parameter values. A three-dimensional model of ceramic foams having pre-selected cell volumes distribution with stochastic coordinates and orientations was created in the software package ANSYSTM. Different groups of finite element models were then generated using the developed foam modeling procedure. The size sensitivity study shows that each of foam specimens at least contains 125 LV-cells. The developed foam models were used to simulate the macroscopic elastic properties of open cell foams under uni-axial and bi-axial loading and were compared with the existing open cell foam models in the literature. In the high porosity regime, it is found that the elastic properties predicted by random Laguerre-Voronoi foam models are almost the same as those predicted by the perfect Kelvin foam models. In the low porosity regime the results of the present work deviate significantly from those of other models in the literature. The results presented here are generally in better agreement with experimental data than other models. Thus, the Laguerre-Voronoi foam models generated in this work are quite close to real foam topology and yields more accurate results than other open cell foam models.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1153--1165
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr., wzory
Twórcy
autor
- University of Missouri, Columbia, Department of Mechanical and Aerospace Engineering, MO 65211 US
autor
- University of Missouri, Columbia, Department of Mechanical and Aerospace Engineering, MO 65211 US
autor
- Beijing Jiaotong University, School of Electrical Engineering, Beijing, Beijing 100044 China
Bibliografia
- [1] L. J. Gibson, M. F. Ashby, The mechanics of three-dimensional cellular materials. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1982, The Royal Society.
- [2] L. J. Gibson, M. F. Ashby, Cellular solids: structure and properties. 1999: Cambridge University Press.
- [3] R. M. Stone, Strength and stiffness of cellular foamed materials. 1997, The University of Arizona.
- [4] T. Nieh, K. Higashi, J. Wadsworth, Mater. Sci. Eng. A. 283 (1), 105-110 (2000).
- [5] M. V. Twigg, J. T. Richardson, Chem. Eng. Res. Des. 80 (2), 183-189 (2002).
- [6] M. F. Ashby, T. Evans, N. A. Fleck, J. Hutchinson, H. Wadley, L. Gibson, Metal Foams: A Design Guide. 2000: Elsevier.
- [7] L. J. Gibson, M. Ashby, C. Solids, Cellular Solids, 307-308 (1997).
- [8] J. Banhart, Prog. Mater Sci. 46 (6), 559-632 (2001).
- [9] W. Warren, A. Kraynik, J. Appl. Mech. 55 (2), 341-346 (1988).
- [10] N. Triantafyllidis, M. Schraad, J. Mech. Phys. Solids. 46 (6), 1089-1124 (1998).
- [11] C. Chen, T. Lu, N. Fleck, J. Mech. Phys. Solids. 47 (11), 2235-2272 (1999).
- [12] S. Papka, S. Kyriakides, Int. J. Solids Struct. 36 (29), 4397-4423 (1999).
- [13] S. Papka, S. Kyriakides, Int. J. Solids Struct. 36 (29), 4367-4396 (1999).
- [14] S. Gu, T. Lu, A. Evans, Int. J. Heat Mass Transfer. 44 (11), 2163-2175 (2001).
- [15] W. Warren, A. Kraynik, J. Appl. Mech. 58 (2), 376-381 (1991).
- [16] L. Gong, S. Kyriakides, W.-Y. Jang, Int. J. Solids Struct. 42 (5), 1355-1379 (2005).
- [17] L. Gong, S. Kyriakides, Int. J. Solids Struct. 42 (5), 1381-1399 (2005).
- [18] W. Warren, A. Kraynik, J. Appl. Mech. 64 (4), 787-794 (1997).
- [19] W. Warren, M. Neilsen, A. Kraynik, MeReC. 24 (6), 667-672 (1997).
- [20] H. Zhu, N. Mills, J. Knott, J. Mech. Phys. Solids. 45 (11), 1875-1904 (1997).
- [21] T. Wejrzanowski, J. Skibinski, J. Szumbarski, K. Kurzydlowski, Comput. Mater. Sci. 67, 216-221 (2013).
- [22] J. L. Grenestedt, K. Tanaka, Scripta Mater. 40 (1), 71-77 (1998).
- [23] Y. X. Gan, C. Chen, Y. P. Shen, Int. J. Solids Struct. 42 (26), 6628-6642 (2005).
- [24] V. Shulmeister, M. Van der Burg, E. Van der Giessen, R. Marissen, Mech. Mater. 30 (2), 125-140 (1998).
- [25] A. P. Roberts, E. J. Garboczi, Acta Mater. 49 (2), 189-197 (2001).
- [26] A. P. Roberts, E. J. Garboczi, J. Mech. Phys. Solids. 50 (1), 33-55 (2002).
- [27] H. Zhu, A. Windle, Acta Mater. 50 (5), 1041-1052 (2002).
- [28] H. Zhu, J. Hobdell, A. Windle, Acta Mater. 48 (20), 4893-4900 (2000).
- [29] J. L. Grenestedt, F. Bassinet, IJMS. 42 (7), 1327-1338 (2000).
- [30] J.-Q. Li, F. Luo, D.-M. Zhu, W.-C. Zhou, Transactions of Nonferrous Metals Society of China. 16, 487-489 (2006).
- [31] K. Li, X. L. Gao, G. Subhash, Int. J. Solids Struct. 42 (5-6), 1777-1795 (2005).
- [32] K. Li, X. L. Gao, A. K. Roy, Composites Part B: Engineering. 36 (3), 249-262 (2005).
- [33] K. Ćwieka, T. Wejrzanowski, K. Kurzydłowski, Arch. Metall. Mater. 62 (1), 259-262 (2017).
- [34] B. Maruyama, J. E. Spowart, D. J. Hooper, H. M. Mullens, A. M. Druma, C. Druma, M. K. Alam, Scripta Mater. 54 (9), 1709-1713 (2006).
- [35] J. R. H, H. X Zhu, A. H. Windle, Acta Mater. 48 (20), 4893-4900 (2000).
- [36] J. Zhou, J. Skibinski, K. Cwieka, T. Wejrzanowski, K.J. Kurzydlowski, O. Adiguzel, MATEC Web of Conferences 30, 03005 (2015).
- [37] J. Zhou, T. Wejrzanowski, J. Skibinski, K. Cwieka, K.J. Kurzydlowski, O. Adiguzel, MATEC Web of Conferences 30, 03006 (2015).
- [38] K. Okazaki, H. Conrad, Transactions of the Japan Institute of Metals. 13 (3), 198-204 (1972).
- [39] F. Rhines, B. Patterson, Metall. Trans. A. 13 (6), 985-993 (1982).
- [40] Z. Nie, Y. Lin, Q. Tong, Comput. Mater. Sci. 131, 160-169 (2017).
- [41] Z. Nie, Y. Lin, Q. Tong, Int. J. Heat Mass Transfer. 113, 819-839 (2017).
- [42] Z. Nowak, M. Nowak, R. B. Pęcherski, M. Potoczek, R. E. Śliwa, Arch. Metall. Mater. 60 (3), 1957-1963 (2015).
- [43] M. Van der Burg, V. Shulmeister, E. Van der Geissen, R. Marissen, Journal of Cellular Plastics 33 (1), 31-54 (1997).
- [44] T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, Int. J. Solids Struct. 40 (13), 3647-3679 (2003).
- [45] H. X. Zhu, J. F. Knott, N. J. Mills, J. Mech. Phys. Solids. 45 (3), 319-343 (1997).
Uwagi
EN
1. The financial support of Master Dynamics of Hong Kong through Grant No. 00041200 and the National Science Foundation of China through Grant No. 51577007 is acknowledged with thanks. The authors thank Dr. Peter Hodges for proof reading the manuscript.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1acfdff9-3e37-443a-bdcd-93c3d8658f2a