PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparative study between load and No-load condition of Brushless DC Motor drives by using MATLAB

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper an extensive comparative performance study is carried out between No-load and load condition of an open loop model of a Brushless Direct Current (BLDC) Motor drive fed from a two-level voltage source inverter (VSI) under 120-degree conduction mode, using simulations in a MATLAB based software environment. BLDC motors are currently growing in popularity and replacing the brush motor in many applications, as they can be used in both low and high-speed vehicle systems and also in servo drives. The high reliability, torque to inertia ratio, high efficiency, high power density, ease of control and mainly the brushless operation make BLDC motors superior to others. It has a permanent magnet as a rotor with a balanced 3-phase armature in its stator. The armature winding is driven by a power electronics inverter which is switched in synchronism with the rotor position, sensed by an optical encoder or a Hall Effect sensor. It is found that torque ripple can be minimized by tuning the value of rotor position, no load condition and trapezoidal armature phase current. The different performance parameters for no-load and load condition of the BLDC motor such as phase voltages, phase currents, speed, electromagnetic torque, d and q axis current and rotor position etc. are determined in MATLAB environment.
Rocznik
Strony
281--286
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Upama Das, NIT Mizoram, Aizawl, India
autor
  • Upama Das, NIT Mizoram, Aizawl, India
autor
  • Upama Das, NIT Mizoram, Aizawl, India
Bibliografia
  • [1] P. Yedamale, Brushless DC (BLDC) Motor Fundamentals, Microship Technology Inc, 2003.
  • [2] S. A. E. X. G. Santhosh Kumar, Brushless dc motor speed control using microcontroller, International Journal Of Current Engineering And Scientific Research (IJCESR) 2 (2015) 183–188.
  • [3] K. T. Selvakumar P, Studies on bldc motor for position control using pidfuzzy- neural network and anti-windup controllers, Australian Journal of Basic and Applied Sciences 1 (2013) 33–48.
  • [4] J. V. Sreekala P, Application of neural network in speed control of brush-less dc motor using soft switching inverter, in: Proceedings of the IEEE International Conference on Engineering Education: Innovative Practices and Future Trends, 2012, p. 1–5.
  • [5] R. S. N. A. R. Aris, A. S. A. G. A. Ghani, M. L. M. Zain, Enhancement of variable speed brushless dc motor using neural network, Indian Journal of Science and Technology 9 (14).
  • [6] A. M. Ahmed, A. Ali-Eldin, M. S. Elksasy, F. F. Areed, Brushless dc motor speed control using both pi controller and fuzzy pi controller, International Journal of Computer Applications 109 (10) (2015) 29–35.
  • [7] K. N. P. Yadav, R. Poola, High dynamic performance of a bldc motor with a front end converter using an fpga based controller for electric vehicle application, Turkish Journal of Electrical Engineering & Computer Sciences 24 (2016) 1636 – 1651.
  • [8] T. Nag, S. B. Santra, A. Chatterjee, D. Chatterjee, A. K. Ganguli, Fuzzy logic-based loss minimisation scheme for brushless dc motor drive system, IET Power Electronics 9 (8) (2016) 1581–1589.
  • [9] R. G. Balakrishna, P. Y. Reddy, Speed control of brushless dc motor using microcontroller, International Journal of Engineering Technology, Management and Applied Sciences 3 (2015) 11–26.
  • [10] S. Hidayat, S. P. Hadi, Suharyanto, The design of the hybrid pid-anfis controller for speed control of brushless dc motor, Journal of Theoretical and Applied Information Technology 371 (2015) 367–375.
  • [11] G.Paranjothi, R.Manikandan, Photovoltaic based brushless dc motor closed loop drive for electric vehicle, International Journal of Emerging Trends in Electrical and Electronics 10 (2014) 9–15.
  • [12] I. V. Abramov, Y. R. Nikitin, A. I. Abramov, E. V. Sosnovich, P. Božek, Control and diagnostic model of brushless dc motor, Journal of Electrical Engineering 65 (5) (2014) 277–282.
  • [13] H. Bayoumi, Ehab & Soliman, Pid/pi tuning for minimal overshoot of pm brushless dc motor drive using swarm optimization, Electromotion Scientific Journal 14 (2007) 198–208.
  • [14] G. T. S C Sajeevan, T source inverter based permanent magnet brushless dc motor, International Journal of Science, Engineering and Technology Research (IJSETR) 4 (2015) 3437–3442.
  • [15] R. S. S. Mittal, V. K. Gupta, Implementation and realization of brushless dc motor, International Journal of Scientific & Engineering Research 4 (2013) 913–918.
  • [16] A. V K R S Patel, Modeling and performance analysis of pid controlled bldc motor and different schemes of pwm controlled bldc motor, International Journal of Scientific and Research Publications 3 (2013) 1–14.
  • [17] H. WANG., Design and implementation of brushless dc motor drive and control system, in: International Workshop on Information and Electronics Engineering (IWIEE), Sci Verse ScienceDirect, ELSEVIER, Procedia Engineering 29, 2012, pp. 2219 – 2224.
  • [18] C. P.Elangovan, Comparison analysis of different controllers for pwm inverter fed permanent magnet brushless dc motor, International Journal of Scientific Engineering and Research 3 (2012) 1–5.
  • [19] S. Bharatkar, R. Yanamshetti, D. Chatterjee, A. Ganguli, Dual-mode switching technique for reduction of commutation torque ripple of brushless dc motor, IET electric power applications 5 (1) (2011) 193–202.
  • [20] O. W. P.C. Krause, S. D. Sudhoff, Analysis of Electric Machinery and drives system, Willey India Pvt. Ltd., 2014.
  • [21] M. R. F. M. Ebadpour, M. B. B. Sharifian, A cost-effective position sensorless control for four-switch three-phase brushless dc motor drives using single current sensor, International Review of Automatic Control (I.RE.A.CO.) 4 (2011) 386–393.
  • [22] D. C. S. S. Bharatkar, Raju Yanamshetti, A. K. Ganguli, Reduction of commutation torque ripple in a brushless dc motor drive, in: 2nd IEEE International Conference on Power and Energy (PECon 08), no. 289 -294, 2008.
  • [23] M. Markovic, Y. Perriard, Simplified design methodology for a slotless brushless dc motor, IEEE trans. on Magnetics 42 (2006) 3842–3846.
  • [24] F. C. F. Caricchi, F. G. Capponi, L. Solero, Experimental study on reducing cogging torque and no-load power loss in axial-flux permanent magnet machines with slotted winding, IEEE Trans. On Industry Applications 40.
  • [25] R. Krishnan, Electric Motor Drives: Modeling, Analysis and Control, Prentice Hall, 2001.
  • [26] D. C. Hanselman, Effect of skew, pole count and slot count on brushless motor radial force, cogging torque and back emf, Proc. Inst. Elect. Eng., pt. B 144 (1997) 325–330.
  • [27] P. Pillay, R. Knshnan, Modeling of permanent magnet motor drives, IEEE Trans. on Industrial Electronics 35 (1988) 537 – 554.
  • [28] D. Hanselman, Brushless Permanent Magnet Motor Design, Mc. Graw Hill, 1994.
  • [29] M. T.J.E., Brushless Permanent and Reluctance Motor Drives, Claredon Press, Oxford, 1989.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1acc7123-8cd8-44a6-a91c-6662d38c10cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.