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Abstract

Accurately forecasting the demand of critical stocks is a vital step in the planning of
a military operation. Demand prediction techniques, particularly autocorrelated models,
have been adopted in the military planning process because a large number of stocks in
the military inventory do not have consumption and usage rates per platform (e.g., ship).
However, if an impending military operation is (significantly) different from prior cam-
paigns then these prediction models may under or over estimate the demand of critical
stocks leading to undesired operational impacts. To address this, we propose an approach
to improve the accuracy of demand predictions by combining autocorrelated predictions
with cross-correlated demands of items having known per-platform usage rates. We adopt
a data mining approach using sequence rule mining to automatically determine cross-
correlated demands by assessing frequently co-occurring usage patterns. Our experiments
using a military operational planning system indicate a considerable reduction in the pre-
diction errors across several categories of military supplies. 1

1 Introduction

Identifying and accurately forecasting demand
for supply items are vital steps in the planning of
a military operation as they facilitate effective de-
cision making. Such demand forecasts, referred to
as Advanced Demand Information (ADI) models in
the supply chain literature, have been shown to be
beneficial in several aspects of supply chain man-
agement [2, 3, 4]. In a military context, ADI of sup-
ply items should be accurately modelled on the ba-
sis of their usage and Rate of Effort (ROE) by mil-
itary platforms such as ships and aircraft. Consider
the logistics planning of a week long military op-
eration O, which involves a ship with a ROE set to
5 hours of sailing per day. Assuming the ship con-
sumes 300 litres of diesel an hour, the diesel ADI
model ADIdiesel for this operation would consist of

a daily demand for 1500 litres of diesel over 7 days
resulting in a total demand of 10500 litres of diesel.

Not all stock items in the military inventory
have platform-based ROE usage models (referred as
ROEM henceforth) that can be used to derive accu-
rate ADI models. A large number of stocks do not
have ROEM mainly due to the fact that most stocks
in the military inventory are managed through de-
mands aggregated across a number of platforms.
For example, demand for a lubricant at a military
base over a time period is generally managed by
aggregating its demand from a number of military
platforms that require the lubricant during that pe-
riod. While the aggregate demand for supply items
at different military bases are captured as a part of
the historic demand data, the per-platform usage de-
tails are not recorded. Therefore, automatic genera-
tion of ROEM is difficult.

1A preliminary version of this work appeared in ACIIDS 2014 [1]
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The lack of ROEM has led to the adoption of
autocorrelated demand prediction techniques, such
as Simple Exponential Smoothing (SES) [5] and
ARIMA [6], in the military operational planning
process [7]. In these techniques, the demand of an
item for an upcoming operation (e.g., a training ex-
ercise) is autocorrelated with the item’s usage in the
past occurrences of the operation [7]. The demand
of an item based on autocorrelation may be assumed
to be its ADI model over the operational period.
Consider the planning of operation O, which as dis-
cussed above, consists of an ADI model of diesel
for a ship, but lacks the ADI models of other crit-
ical stocks such as lubricants that are essential to
the ship’s operation. In this case, the demand for
a lubricant ADIl is predicted based on its historic
usage by adopting an ARIMA model, denoted as
ADIl = ARIMAl . However, if an impending mili-
tary operation is (significantly) different from prior
campaigns then these prediction models may un-
der or over estimate the demand of critical stocks
leading to undesired operational or cost impacts.
For example, if the operation O is a high intensity
deployment in comparison with previous military
campaigns then ADIl would be underestimated.

To address this, we propose an approach to
improve the accuracy of demand predictions by
combining autocorrelated predictions with cross-
correlated demands of items having known per-
platform usage rates. In our approach, the predic-
tion of an ADI model for an item with no ROEM
is based not only on the item’s historic demand but
also takes into account the item’s correlation with
other items having known ROEM. Our approach
builds on the basic premise that the demand for
certain supply items are correlated in the context
of a military operation. For example, ADIl and
ADIdiesel are correlated in the context of operation
O because typically there would a surge in lubri-
cant usage as a part of the ship’s maintenance rou-
tine after a surge in diesel consumption during the
operation. In our approach, the ADI model of the
lubricant ADIl required for the ship is predicted by
combining ARIMAl with the lubricant’s correlation
with ADIdiesel .

A key concern of our demand modelling ap-
proach is the identification of correlation between
demand for supply items. With over a million
unique stock items in the military inventory, man-

ually identifying correlation in demand between
items is infeasible. Therefore, we adopt a data min-
ing approach using sequence rule mining to deter-
mine frequently co-occurring usage between sup-
ply items from historic demand data. Our approach
combines the results from sequence rule mining
with time series regression analysis to derive cor-
related ADI models. We illustrate the effective-
ness of our approach by predicting unknown ADI
models in a military operational planning system.
Our experimental evaluation indicates that incorpo-
rating demand correlations in the ADI forecasting
process considerably reduces the prediction errors
across several categories of military supplies, im-
proving the accuracy of the demand planning pro-
cess.

The rest of the paper is organised as follows.
Section 2 provides an overview of the related work
followed by a brief discussion on the existing de-
mand modelling process in Section 3. Our approach
to extend the demand modelling process with se-
quence rule mining is presented in Section 4. The
evaluation of our extended demand modelling pro-
cess within a military operational planning system
is discussed in Section 5. We share our results from
our experimental evaluation in Section 6. Section 7
summarises our contribution and future work.

2 Related work

A large body of work that deals with the advan-
tages of ADI models in several aspects of supply
chain management exists, such as [2, 3, 4]. The ap-
proaches in [2, 3] emphasise the utility of ADI mod-
els, which are established through market research,
inputs from sales managers and advance (but im-
perfect) orders, to effectively realign manufacturing
processes according to the ADI models. Existing
works such as [4] have shown that military plan-
ning systems are a promising source of ADI mod-
els particularly when ROEM exist. However, the
problem of generating ADI models for items with
no ROEM has not received as much attention. To
the best of our knowledge, there are no studies that
address the problem of missing ADI model gener-
ation in the military context. We address this gap
by extending a military operational planning sys-
tem that generates a few ADI models on the basis
of their ROEM. The extension’s goal is to leverage
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the generated models to improve the ADI prediction
accuracy of a large number of items with no ROEM.

In the absence of ADI models, demand pre-
diction techniques that use auto-correlation may be
used to estimate the demand for critical military
supplies for impending military operation based on
their past usage history [7]. However, even items
with continuous non-intermittent demands may be
under or over estimated if the impending military
operation is different from its past occurrences. In
our approach, we complement an existing auto-
correlated demand prediction technique with ADI
correlation and show the resultant reduction in the
prediction errors across several categories of mili-
tary supplies.

3 The military demand modelling
process

Accurate ADI models are essential to undertake
effective decision making at the planning stage of
a military operation. The work in [4] shows that
a military operational planning system can be used
to estimate the ADI models for an operation. Fig-
ure 1 shows the military demand modelling process.
The planning system allows a logistics planner to
specify the force elements including platforms and
personnel to be used in an operation, locations and
routes in the operation, a schedule of activities in-
cluding resource allocations, and the supply chains
used to sustain the operation [4].

Apart from troop and equipment movements,
the logistics plan of an operation consists of ADI
models to effectively procure and distribute sup-
plies to the operation. As shown in Figure 1,
the planning system utilises pre-specified ROEM to
generate the ADI models for Item1 and Item2. The
ADI models generated by the planning system fa-
cilitate a variety of decision support tasks includ-
ing assessing plan feasibility, logistics sustainabil-
ity, and risks or weak points in the operational plan.
However, due to the lack of ROEM, ADI models
for many critical items (e.g., Item3 and Item4 in
Figure 1) are predicted on the basis of their historic
demand instead of being generated by the planning
system. This inhibits effective and comprehensive
military operational planning.

4 Demand modelling process ex-
tended with correlated ADI mod-
els

The ideal solution to the lack of ADI mod-
els would be to establish ROEM for all stock
items. However, such an effort would be an enor-
mous, data-intensive and time-consuming under-
taking with high costs due to the size of the mil-
itary inventory. As mentioned earlier, automatic
generation of ROEM is difficult as the historic de-
mand data does not record per-platform usage de-
tails. Therefore, an approach to improve the accu-
racy of ADI models available for analyses in the ab-
sence of ROEM is required.

In response, we propose an extension to the ex-
isting demand modelling process where the accu-
racy of an item’s ADI autocorrelation-based pre-
diction is improved by combining with the item’s
cross-correlations with known ADI models. Our
approach builds on the basic premise that the de-
mand for certain supply items are cross-correlated
in the context of a military operation. The correla-
tion in demands may arise from a range of factors
including complementary relationships (e.g., a gear
lubricant oil and an engine oil), part-of relationships
(e.g., an engine and a fuel pump), dependence (e.g.,
a gun and ammunition), and operational circum-
stances (e.g., an operation at a tropical region re-
quires both anti-malarial drugs and repellents). As
a result, in some cases, when the demands of 2 sup-
ply items are correlated and if only one item’s ADI
model is generated by the military operational plan-
ning system then their correlation may potentially
be leveraged to improve the accuracy of the second
item’s predicted ADI model.

Our demand modelling approach presented in
Figure 2 extends the basic process discussed in Sec-
tion 3 with following three additional steps.

1 Identification of cross-correlation in demands
using the historic demand data

2 Modelling the cross-correlation in demands

3 Combining autocorrelation with cross-
correlation to improve ADI prediction accuracy

The 3 steps in the extended demand modelling
approach are detailed below.
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Figure 1. Military demand modelling process

Figure 2. Demand modelling process extended with correlated ADI models
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4.1 Sequence rules to identify correlated
demands (Step 1)

The key challenge of our demand modelling ap-
proach is the identification of cross-correlation in
demands. Specifically, the challenge is to deter-
mine frequently co-occurring usage between supply
items from the historic demand data. We adopt a
data mining approach to address this issue because
the size of the military inventory makes manual dis-
covery of correlations infeasible. Widely used data
mining methods such as association rule mining [8]
and all-pairs correlation techniques [9] are unsuit-
able to this problem mainly because the historic
demand data is not a market basket database. Al-
though conversion to a market basket database us-
ing time period based sampling is possible (e.g., all
demands on a day can be treated as one market bas-
ket transaction), previous works like [9] have noted
that such methods are vulnerable to false-positive
and false-negative correlations because they do not
take into account possible lags between the de-
mands of correlated items. For example, unless the
whole duration of the operation O discussed in Sec-
tion 1 is considered as a single market basket trans-
action, the lagged correlation between demand for
diesel and the lubricant for post-operational main-
tenance would be ignored.

To address this, we transform the identifi-
cation of correlation in demands as a sequence
rule mining problem, where the goal is to dis-
cover sequential rules from a database of se-
quences [10]. A sequence database is of
the form S = {s1, . . . ,sn}, where each sequence
si consists of chronologically ordered itemsets
{{i11, . . . , i

1
x}, . . . ,{im1 , . . . , i

m
y }}. The sequence rule

mining process over S returns a set of sequence
rules of the form X → Y , where X ⊂ si and Y ⊂ si

are disjoint itemsets such that Y occurs after X in S
with a certain support and confidence [10]. While
users are allowed to set a minimum support min-
sup value to filter infrequent rules, in most applica-
tion domains, however, it is difficult to ascertain an
optimal minsup before the mining process. There-
fore, we adopt the rule mining algorithm in [10]
that allows the users to efficiently search for top-
k sequence rules with a certain minimum confi-
dence. The algorithm works by a process called
RuleGrowth, where small sequence rules are recur-
sively expanded by adding frequent itemsets to the

left and right side of the rules. The process continu-
ously updates a top-k rules set when new rules with
higher support are found.

Step 1 in Figure 2 shows the adoption of a se-
quence rule mining process in our extended demand
modelling process to identify correlated demands.
Firstly, a sequence database is generated from the
historic demand data. Each sequence is formed by
chronologically ordering the demand transactions
at a military base. The rationale behind location-
based sequence formation is that if the demand for
two items co-occur frequently (with or without lag)
across a number of military bases then it is likely
that their demands are correlated. The demand se-
quences table in Figure 2 shows the location-based
sequence database generated from the historic de-
mand data. For example, the demand sequence
at location 1 consists of items {1,3,2,4, . . .} that
occur at times {T 1,T 2,T 5,T 6, . . .}. The demand
sequences are provided as input to the sequence
rule mining process [10] to generate sequence rules
that are above a user-specified confidence threshold
across all locations. Figure 2 shows the sequence
rules generated {{Item1} → {Item3},{Item2} →
{Item4},{Item1, Item2}→{Item4}, . . .}. The rule
Item1 → Item3 implies that if a military base de-
mands Item1 then it is likely that in the future it
will be followed by a demand for Item3, indicat-
ing a potential correlation in the demands of items
1 and 3. Note that, unlike all-pairs correlation [9],
the sequence rules also capture cross-correlations
between several items (e.g., {Item1, Item2} →
{Item4}).

In some data mining domains (e.g., retail) it is
sufficient to just identify potential correlations be-
tween items as this may already be enough to effec-
tively adapt marketing tactics. In the context of ADI
model generation, however, modelling the charac-
teristics of a correlation is equally critical because
it is important to quantify how the demand for one
or more supply items impact the demand of a corre-
lated item. To this end, we adopt time series regres-
sion analysis to model the correlated demands.

4.2 Time series regression to model corre-
lated demands (Step 2)

While a sequence rule indicates a potential cor-
relation, in order to quantify the relationship be-
tween items it is important to consider the de-
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mand quantities of the correlated items over time.
Time period based sampling (e.g., daily demand)
can be used to represent the chronologically or-
dered demands of an item as a time series. Time
series regression analysis, a well known statistical
method to model the relationship between time se-
ries variables, is one way to model the correlated
demands. A linear regression model of the form
Yt = β1X1

t + · · ·+βnXn
t + ε models the relationship

between a dependent variable Y at time t and inde-
pendent variables {X1

t , . . . ,X
n
t } at t using the regres-

sion coefficients β1, . . . ,βn, and an error term ε.

The problem of selecting suitable independent
variables X from a large pool of potential variables
is a common issue in regression analysis. Meth-
ods such as stepwise regression [11], which sequen-
tially add/remove variables to a regression model
based on a scoring criteria, are suitable if the pool
of independent variables is small but do not scale
well to larger pools. In the context of ADI model
generation, the sequence rules generated in step 1
can be used to substantially reduce the pool of in-
dependent variables available to conduct stepwise
regression. All items in the antecedent part of a
sequence rule are considered as a part of the pool
of independent variables to predict the unknown
ADI models of items in the subsequent part of
the rule. Step 2 of Figure 2 shows the regres-
sion analysis process conducted, leveraging the se-
quence rules to generate linear (or non-linear) mod-
els of the correlated demands. For every item in a
demand correlation identified by a sequence rule,
time period based sampling is performed to gen-
erate the item’s demand time series. For exam-
ple, the demands table in step 2 of Figure 2 shows
the time series creation of items {1,3}, {2,4}, and
{1,2,4}. The regression analysis results include a
linear model Item3 = β1Item1+ ε1 quantifying the
demand for Item3 from the demand for Item1. A
user-defined threshold for the coefficient of deter-
mination R2 [12] is used to filter poorly correlated
models.

Recalling the issue of false-negatives and false-
positives with time period based sampling raised in
Section 4.1, the problem was due to the inability to
deal with lagged correlations. We address this issue
in step 2 by allowing lagged variants of known ADI
models to be part of the pool of independent vari-
ables available to the regression analysis. For exam-

ple, if the monthly demand of a lubricant lt is depen-
dent on a truck’s ROE (i.e., diesel demand) over the
last 6 months {dt−1, . . . ,dt−6} then it can be mod-
elled as lt = β1dt−1+ · · ·+β6dt−6+ε. The weighted
sum of the time lagged values has an effect similar
to a Finite Impulse Response Filter[13] in remov-
ing some frequency components. Due to the addi-
tional possible delays and weights there is potential
for overfitting in the ADI prediction model. This
can be ameliorated by applying regularisation tech-
niques commonly applied in machine learning (re-
gression).

4.3 Combining Auto-correlation and ADI
correlation (Step 3)

Recall the ARIMA-based autocorrelated ADI
prediction of Item3 and Item4 from Figure 1. In
the final step (Step 3) in our extended demand mod-
elling process in Figure 2, we incorporate the cross-
correlated demand models within the ARIMA pre-
diction technique to produce a combined prediction.
Specifically, when predicting the ADI model of an
item with no ROEM (e.g., Item3), we use ADI mod-
els discovered in Step 1 and Step 2 in Figure 2 as
external regressors in the ARIMA model. It is im-
portant to note that both step 1 and 2 may be per-
formed off-line prior to the planning stage.

In Step 3 of the extended demand modelling
process, we consider 2 cases of incorporating cross-
correlated ADI models in the ARIMA-based pre-
diction process: single demand correlation and mul-
tiple demand correlation.

Single Demand Correlation (ARIMA SR)

Single demand correlation combines an
ARIMA-based autocorrelated prediction technique
with a single cross-correlated ADI model, referred
to as ARIMA SR [1]. When an ARIMA SR model
is used to predict an item’s ADI model then the pre-
diction is not only based on the item’s past usage
but also on its correlation with one other known
ADI model.

The ARIMA SR process is illustrated in Step
3.1 of Figure 2. The demand for Item3, for exam-
ple, is predicted by combining its ARIMA predic-
tion ARIMAItem3 with a single cross-correlated ADI
model Item1. Candidates for cross-correlation are
selected in Step 2 of the extended demand mod-
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to as ARIMA SR [1]. When an ARIMA SR model
is used to predict an item’s ADI model then the pre-
diction is not only based on the item’s past usage
but also on its correlation with one other known
ADI model.

The ARIMA SR process is illustrated in Step
3.1 of Figure 2. The demand for Item3, for exam-
ple, is predicted by combining its ARIMA predic-
tion ARIMAItem3 with a single cross-correlated ADI
model Item1. Candidates for cross-correlation are
selected in Step 2 of the extended demand mod-
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elling process as discussed in Section 4.2. The
ARIMA SR prediction of Item3 is modelled as
Item3 = ARIMAItem3 +β31Item1+ ε3.

Multiple Demand Correlation (ARIMA SRM)

The demand for some supply items may be
cross-correlated with more than one ADI model.
We refer to this case as multiple demand corre-
lation (ARIMA SRM), shown as Step 3.2 in Fig-
ure 2. Let us consider the prediction of a gear
lubricant’s ADI model ADIl based on combining
ARIMAl and a cross-correlated diesel ADI model
ADIdiesel . The dependence that underlies the cross-
correlation between diesel and lubricant usage is
discussed in Section 1. However, the lubricant’s
demand may also be cross-correlated with other
known ADI models, for example brake fluid ADIb f ,
because typically a vehicle’s maintenance process
includes a change of lubricants and brake fluid.
Therefore, ADIl predictions may potentially be im-
proved by also considering the known ADIb f .

The ARIMA SRM process is illustrated in Step
3.2 of Figure 2. The demand for Item4, for ex-
ample, is predicted by combining its ARIMA pre-
diction ARIMAItem4 with multiple cross-correlated
ADI models Item1 and Item2. The ARIMA SRM
prediction of Item4 is modelled as Item4 =
ARIMAItem4 +β41Item1+β42Item2+ ε4.

5 Evaluation of the extended de-
mand modelling process

To evaluate, we used the SES, ARIMA,
ARIMA SR, ARIMA SRM techniques to predict
the demand of items required for military training
exercises.

5.1 Implementation

To illustrate our extended demand modelling
approach, we have implemented a software sys-
tem that uses SES, ARIMA, ARIMA SR, and
ARIMA SRM to infer ADI models for items with
no ROEM. The system is implemented as an exten-
sion to a military operational planning system.

Consider the planning of a military contingency
operation. The mission’s logistics plan using the
military operational planning system would con-

sist of ADI models of items with ROEM. Based
on this initial plan, our implementation offers the
planner a set of improved ADI predictions that
are derived from a library of autocorrelated and
cross-correlated ADI models. The library of cor-
related demand models used in our system is devel-
oped prior to the planning process. As discussed
in Section 4.1, the identification of demand corre-
lation is transformed into a sequence rule mining
problem that is solved using the top-k rule algo-
rithm [10] in the Sequential Rule Mining Frame-
work (SPMF) [14]. The linear models quantifying
the cross-correlated demands are generated using
the dynlm package in the statistical system R [15].
The ARIMA models are generated using the fore-
cast [16] package in R.

Figure 3. Inventory Profile

5.2 Inventory profile

Our initial analysis indicates that the military
operation planning system can only generate ADI
models for some frequently used military consum-
ables in the following inventory profiles:

– fuels and lubricants (e.g., engine oil)

– food (e.g., combat ration packs)

– clothing (e.g., combat boots)

– cleaning products (e.g., engine cleaning brush)

– building products (e.g., aircraft sealant)

– packaging (e.g., fuel drums)

The relative proportion of the military inventory
profile under consideration is presented in Figure 3.

Multiple Demand Correlation
(ARIMA SRM)

The demand for some supply items may be cross-
correlated with more than one ADI model. We
refer to this case as multiple demand correlation
(ARIMA SRM), shown as Step 3.2 in Figure 2.
Let us consider the prediction of a gear lubricant’s
ADI model ADIl based on combining ARIMAl and
a cross-correlated diesel ADI model ADIdiesel . The
dependence that underlies the cross-correlation be-
tween diesel and lubricant usage is discussed in Sec-
tion 1. However, the lubricant’s demand may also be
cross-correlated with other known ADI models, for
example brake fluid ADIb f , because typically a ve-
hicle’s maintenance process includes a change of lu-
bricants and brake fluid. Therefore, ADIl predictions
may potentially be improved by also considering the
known ADIb f .

The ARIMA SRM process is illustrated in Step
3.2 of Figure 2. The demand for Item4, for exam-
ple, is predicted by combining its ARIMA predic-
tion ARIMAItem4 with multiple cross-correlated ADI
models Item1 and Item2. The ARIMA SRM predic-
tion of Item4 is modelled as Item4 = ARIMAItem4 +
β41Item1+β42Item2+ ε4.

5 Evaluation of the extended de-
mand modelling process

To evaluate, we used the SES, ARIMA, ARIMA SR,
ARIMA SRM techniques to predict the demand of
items required for military training exercises.

5.1 Implementation

To illustrate our extended demand modelling ap-
proach, we have implemented a software system that
uses SES, ARIMA, ARIMA SR, and ARIMA SRM
to infer ADI models for items with no ROEM. The
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system is implemented as an extension to a military
operational planning system.

Consider the planning of a military contingency
operation. The mission’s logistics plan using the mil-
itary operational planning system would consist of
ADI models of items with ROEM. Based on this ini-
tial plan, our implementation offers the planner a set
of improved ADI predictions that are derived from
a library of autocorrelated and cross-correlated ADI
models. The library of correlated demand models
used in our system is developed prior to the planning
process. As discussed in Section 4.1, the identifi-
cation of demand correlation is transformed into a
sequence rule mining problem that is solved using
the top-k rule algorithm [10] in the Sequential Rule
Mining Framework (SPMF) [14]. The linear models
quantifying the cross-correlated demands are gener-
ated using the dynlm package in the statistical system
R [15]. The ARIMA models are generated using the
forecast [16] package in R.

5.2 Inventory profile

Our initial analysis indicates that the military opera-
tion planning system can only generate ADI models
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Figure 4. Average Demand Prediction Errors for SES, ARIMA, ARIMA SR and ARIMA SRM

5.3 Experimental set-up

We used the SES, ARIMA, ARIMA SR,
ARIMA SRM techniques to predict the demand of
items across the categories of military consumables
mentioned in Section 4.3. We used the demand data
from military training exercises conducted over the
last 20 years in these experiments. The first 10
years of data from the training exercises were used
to train the demand predictors, while the remain-
ing data was used for testing the prediction accu-
racy. To quantify the accuracy of a predicted ADI
model, we use the Normalised Root Mean Square
Error (NRMSE) metric defined as,

NRMSE =
RMSE

max(ADIa)−min(ADIa)

where RMSE is the standard Root Mean Square Er-
ror [17] and ADIa is the actual ADI model.

Our evaluation included two sets of experi-
ments. The first set of experiments were con-
ducted to assess whether ARIMA SR predictions
were more accurate than those that are predicted
by SES and ARIMA. The second set of experi-
ments evaluated whether adopting ARIMA SRM
over ARIMA SR improved the accuracy of ADI
predictions.

6 Results and discussion

We present the results from our experiments in
this section.

6.1 ARIMA SR evaluation

The results from our experiments to evalu-
ate ARIMA SR are presented in Figure 4. Each
group of bars denotes the average NRMSE resulting
from the adoption of SES, ARIMA, ARIMA SR
and ARIMA SRM for ADI prediction in an in-
ventory segment. Figure 4 shows that on aver-
age the ARIMA SR model’s NRMSE is lower than
SES and ARIMA across all inventory segments.
When the single standard deviations shown as er-
ror bars in Figure 4 are taken into consideration, the
ARIMA SR technique performs better than the SES
and ARIMA techniques in terms of NRMSE in 3
out of the 6 categories of military consumables.

6.2 ARIMA SRM evaluation

Figure 4 also presents the results from
our experiments to evaluate whether adopting
ARIMA SRM instead of ARIMA SR improves the
accuracy of the ADI predictions. From the re-
sults it is evident that on average the ARIMA SRM
model’s NRMSE is lower than ARIMA SR across
all inventory segments. The single standard devi-
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We used the SES, ARIMA, ARIMA SR,
ARIMA SRM techniques to predict the demand of
items across the categories of military consumables
mentioned in Section 4.3. We used the demand data
from military training exercises conducted over the
last 20 years in these experiments. The first 10
years of data from the training exercises were used
to train the demand predictors, while the remain-
ing data was used for testing the prediction accu-
racy. To quantify the accuracy of a predicted ADI
model, we use the Normalised Root Mean Square
Error (NRMSE) metric defined as,

NRMSE =
RMSE

max(ADIa)−min(ADIa)

where RMSE is the standard Root Mean Square Er-
ror [17] and ADIa is the actual ADI model.

Our evaluation included two sets of experi-
ments. The first set of experiments were con-
ducted to assess whether ARIMA SR predictions
were more accurate than those that are predicted
by SES and ARIMA. The second set of experi-
ments evaluated whether adopting ARIMA SRM
over ARIMA SR improved the accuracy of ADI
predictions.

6 Results and discussion

We present the results from our experiments in
this section.

6.1 ARIMA SR evaluation

The results from our experiments to evalu-
ate ARIMA SR are presented in Figure 4. Each
group of bars denotes the average NRMSE resulting
from the adoption of SES, ARIMA, ARIMA SR
and ARIMA SRM for ADI prediction in an in-
ventory segment. Figure 4 shows that on aver-
age the ARIMA SR model’s NRMSE is lower than
SES and ARIMA across all inventory segments.
When the single standard deviations shown as er-
ror bars in Figure 4 are taken into consideration, the
ARIMA SR technique performs better than the SES
and ARIMA techniques in terms of NRMSE in 3
out of the 6 categories of military consumables.

6.2 ARIMA SRM evaluation

Figure 4 also presents the results from
our experiments to evaluate whether adopting
ARIMA SRM instead of ARIMA SR improves the
accuracy of the ADI predictions. From the re-
sults it is evident that on average the ARIMA SRM
model’s NRMSE is lower than ARIMA SR across
all inventory segments. The single standard devi-
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Figure 5. Relative improvements in prediction accuracies

ations indicate that the ARIMA SRM is more ac-
curate than the SES and ARIMA in all categories
of military consumables except ’Food’. We con-
ducted further analysis to explain the results in the
’Food’ inventory segment. From our analysis we
were able to conclude that as the ’Food’ segment
consists only 1% items in the experiment’s inven-
tory profile the results were more sensitive to vari-
ance in the NRMSE values.

Furthermore, we also measured the relative
improvement achieved by ARIMA over SES,
ARIMA SR over ARIMA, and ARIMA SRM over
ARIMA SR. The relative improvement, that is the
reduction in NRMSE, of technique T over T ′ is
measured as

NRMSET ′ −NRMSET

NRMSET ′
×100.

The relative improvement results shown as a
stacked bar chart in Figure 5 indicate that by adopt-
ing ARIMA SRM the ADI prediction accuracy can
be improved over ARIMA by at least 20% across
all stock categories. Our experiments indicate that
in the biggest inventory segment ’Clothing’ (32% of
the inventory profile as shown in Figure 3) the rela-
tive improvement of ARIMA SRM over ARIMA is
about 47%.

From the results presented in Figures 4-5, it can
be concluded that combining correlated ADI mod-

els discovered using sequence rule mining with au-
tocorrelated demand prediction improves the accu-
racy of military demand predictions.

7 Summary and future work

We presented an extended demand modelling
approach for military operational planning, where
the accuracy of ADI prediction for critical stocks
is improved by combining autocorrelated predic-
tions with cross-correlated ADI models of items
with known ROEM. We highlighted the importance
of accurate ADI models to conduct comprehen-
sive and effective operational analysis and decision
making. We presented an approach based on se-
quence rule mining to identify (possibly delayed)
correlation in demands. We also showed how re-
gression models are used to quantify the demand
correlations. An experimental evaluation of our ap-
proach was conducted to show the improvement in
the military demand modelling process.

Conducting a full-scale user study to further
validate ADI model generation is part of our cur-
rent and future work. We also plan to explore
the prospect of probabilistic cross-correlations with
ADI models generated by the military operational
planning system.
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