PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Penetrative convection due to absorption of radiation in a magnetic nanofluid saturated porous layer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study investigates the onset of penetrative convection induced by selective absorption of radiation in a magnetic nanofluid saturated porous medium. The influence of Brownian motion, thermophoresis, and magnetophoresis on magnetic nanofluid treatment is taken into consideration. The Darcy’s model is selected for the porous medium. We conduct a linear stability analysis to examine the onset of instability and evaluate the results for two different configurations, namely, when the layer is heated from below and when the layer is heated from above. The numerical investigations are carried out by applying the Chebyshev pseudospectral method. The effect of the porosity parameter E, parameter Y (represents the ratio of internal heating to boundary heating), Lewis number Le, concentration Rayleigh number Rn, Langevin parameter αL, width of nanofluid layer d, diffusivity ratio η, and modified diffusivity ratio NA is examined at the onset of convection. The results indicate that the convection commences easily with an increase in the value of Y, Le, and NA but opposite in the case with a decrease in the value of E, αL, η and d for both the two configurations. The parameter Rn advances the onset of convection when the layer is heated from below, while delays the onset of convection when the layer is heated from above.
Wydawca
Rocznik
Strony
129--142
Opis fizyczny
Bibliogr. 44 poz., tab., rys.
Twórcy
autor
  • Department of Applied Sciences, National Institute of Technology Delhi, Delhi–110040, India
  • Department of Applied Sciences, National Institute of Technology Delhi, Delhi–110040, India
Bibliografia
  • [1] Buongiorno, J. (2006). Convective transport in nanofluids. Journal of heat transfer, 128(3), 240-250.
  • [2] Nield, D.A., Kuznetsov, A.V. (2009). Thermal instability in a porous medium layer saturated by a nanofluid. International Journal of Heat and Mass Transfer, 52(25-26), 5796-5801.
  • [3] Nield, D.A., Kuznetsov, A.V. (2014). Thermal instability in a porous medium layer saturated by a nanofluid: a revised model. International Journal of Heat and Mass Transfer, 68, 211-214.
  • [4] Yadav, D., Agarwal, G., Lee, J. (2016). Thermal instability in a rotating nanofluid layer: a revised model. Ain Shams Engineering Journal, 7(1), 431-440.
  • [5] Bhadauria, B.S., Agarwal, S. (2011). Convective transport in a nanofluid saturated porous layer with thermal non equilibrium model. Transport in porous media, 88(1), 107-131.
  • [6] Yadav, D., Bhargava, R., Agarwal, G. S. (2012). Boundary and internal heat source effects on the onset of Darcy- Brinkman convection in a porous layer saturated by nanofluid. International Journal of Thermal Sciences, 60, 244-254.
  • [7] Yadav, D., Lee, J., Cho, H.H. (2015). Brinkman convection induced by purely internal heating in a rotating porous medium layer saturated by a nanofluid. Powder Technology, 286, 592-601.
  • [8] Yadav, D., Wang, J. (2018). Convective Heat Transport in a Heat Generating Porous Layer Saturated by a Non-Newtonian Nanofluid. Heat Transfer Engineering, 1-20.
  • [9] Yadav, D. (2018). The Influence of Pulsating Throughflow on the Onset of Electro-Thermo-Convection in a Horizontal Porous Medium Saturated by a Di-electric Nanofluid. Journal of Applied Fluid Mechanics, 11(6), 1679-1689.
  • [10] Krishnamurti, R. (1998). Convection induced by selective absorption of radiation: a laboratory model of conditional instability. Dynamics of atmospheres and oceans, 27(1-4), 367- 382.
  • [11] Hill, A.A. (2004). Penetrative convection induced by the absorption of radiation with a nonlinear internal heat source. Dynamics of atmospheres and oceans, 38(1), 57-67.
  • [12] Straughan, B. (2002). Global stability for convection induced by absorption of radiation. Dynamics of atmospheres and oceans, 35(4), 351-361.
  • [13] Hill, A.A. (2003). Convection due to the selective absorption of radiation in a porous medium. Continuum Mechanics and Thermodynamics, 15(5), 451-462.
  • [14] Hill, A.A. (2004). Convection induced by the selective absorption of radiation for the brinkman model. Continuum Mechanics and Thermodynamics, 16(1-2), 43-52.
  • [15] Chang, M.H. (2004). Stability of convection induced by selective absorption of radiation in a fluid overlying a porous layer. Physics of Fluids, 16(10), 3690-3698.
  • [16] Gupta, U., Ahuja, J., Wanchoo, R. (2013). Magneto convection in a nanofluid layer. International Journal of Heat and Mass Transfer, 64, 1163-1171.
  • [17] Yadav, D., Bhargava, R., Agarwal, G. S. (2013). Thermal instability in a nanofluid layer with a vertical magnetic field. Journal of Engineering Mathematics, 80(1), 147-164.
  • [18] Murthy, P. V. S. N., RamReddy, C., Chamkha, A. J., Rashad, A. M. (2013). Magnetic effect on thermally stratified nanofluid saturated non-Darcy porous medium under convective boundary condition. International Communications in Heat and Mass Transfer, 47, 41-48.
  • [19] Yadav, D., Bhargava, R., Agrawal, G.S., Hwang, G.S., Lee, J., Kim, M.C. (2014). Magneto-convection in a rotating layer of nanofluid. Asia-Pacific Journal of Chemical Engineering, 9(5), 663-677.
  • [20] Yadav, D., Kim, C., Lee, J., Cho, H.H. (2015). Influence of magnetic field on the onset of nanofluid convection induced by purely internal heating. Computers & Fluids, 121, 26-36.
  • [21] Yadav, D., Wang, J., Bhargava, R., Lee, J., Cho, H.H. (2016). Numerical investigation of the effect of magnetic field on the onset of nanofluid convection. Applied Thermal Engineering, 103, 1441-1449.
  • [22] Sheikholeslami, M. (2018). CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. Journal of Molecular Liquids, 249, 921-929.
  • [23] Borglin, S.E., Moridis, G.J., Oldenburg, C.M. (2000). Experimental studies of the flow of ferrofluid in porous media. Transport in Porous Media, 41(1), 61-80.
  • [24] Vaidyanathan, G., Sekar, R., Balasubramanian, R. (1991). Ferroconvective instability of fluids saturating a porous medium. International journal of engineering science, 29(10), 1259-1267.
  • [25] Mahajan, A., Sharma, M.K. (2014). Convection in magnetic nanofluids in porous media. Journal of Porous Media, 17(5), 439- 455.
  • [26] Sheikholeslami, M. (2017). Numerical simulation of magnetic nanofluid natural convection in porous media. Physics Letters A, 381(5), 494-503.
  • [27] Sharma, M.K., Singh, R. (2014). Linear stability analysis of double-diffusive convection in magnetic nanofluids in porous media. Journal of Porous Media, 17(10), 883-900.
  • [28] Sheikholeslami, M., Rashidi, M.M., Hayat, T., Ganji, D.D. (2016). Free convection of magnetic nanofluid considering MFD viscosity effect. Journal of Molecular Liquids, 218, 393-399.
  • [29] Sheikholeslami, M. (2016). CVFEM for magnetic nanofluid convective heat transfer in a porous curved enclosure. The European Physical Journal Plus, 131(11), 413.
  • [30] Mahajan, A., Sharma, M.K. (2017). Penetrative convection in magnetic nanofluids via internal heating. Physics of Fluids, 29(3), 034101.
  • [31] Mahajan, A., Sharma, M.K. (2018). The onset of penetrative convection stimulated by internal heating in a magnetic nanofluid saturating a rotating porous medium. Canadian Journal of Physics, 96(8), 898-911.
  • [32] Sheikholeslami, M., Rokni, H. B. (2018). Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Physics of Fluids, 30(1), 012003.
  • [33] Mahajan, A., Sharma, M.K. (2018). Penetrative convection in an internally heated layer of magnetic nanofluid saturating a porous medium. Magnetohydrodynamics, 54(3), 225-243.
  • [34] Vasseur, P., Satish, M.G., Robillard, L. (1987). Natural convection in a thin, inclined, porous layer exposed to a constant heat flux. International Journal of Heat and Mass Transfer, 30(3), 537-549.
  • [35] Reda, D.C. (1983). Natural convection experiments in a liquid-saturated porous medium bounded by vertical coaxial cylinders. Journal of heat transfer, 105(4), 795-802.
  • [36] Prasad, V., Kulacki, F.A., Kulkarni, A.V. (1986). Free convection in a vertical, porous annulus with constant heat flux on the inner wall-experimental results. International journal of heat and mass transfer, 29(5), 713-723.
  • [37] Shliomis, M.I., Smorodin, B.L. (2002). Convective instability of magnetized ferrofluids. Journal of Magnetism and Magnetic Materials, 252, 197-202.
  • [38] Mahajan, A., Sharma, M.K. (2018). Convection in a magnetic nanofluid saturating a porous medium under the influence of a variable gravity field. Engineering Science and Technology, an International Journal, 21(3), 439-450.
  • [39] Kaloni, P.N., Lou, J.X. (2004). Convective instability of magnetic fluids. Physical Review E, 70(2), 026313.
  • [40] Finlayson, B.A. (1970). Convective instability of ferromagnetic fluids. Journal of Fluid Mechanics, 40(4), 753-767.
  • [41] Rosensweig, R.E. (1997). Ferrohydrodynamics. Dover Publications, INC. Mineola, New York.
  • [42] Yadav, D., Lee, D., Cho, H.H., Lee, J. (2016). The onset of double-diffusive nanofluid convection in a rotating porous medium layer with thermal conductivity and viscosity variation: a revised model. Journal of Porous media, 19(1), 31-46.
  • [43] Awasthi, M.K., Kumar, V., Patel, R.K., (2016). Onset of triply diffusive convection in a maxwell fluid saturated porous layer with internal heat source. Ain Shams Engineering Journal, 9(4), 1591-1600.
  • [44] Gupta, U., Sharma, J., Sharma, V. (2015). Instability of binary nanofluids with magnetic field. Applied Mathematics and Mechanics, 36(6), 693-706
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ac31a7e-6961-4837-89fd-8c1291bc1f55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.